| Contact Us   Global

Nano Materials

"What is the ultimate resolution of AFM in air?" This is a very important question because we all want to know the size of the smallest details on our samples an ambient AFM can show. By looking at the 'atomic resolution' images of graphite or mica, such as in Fig. 1, it is natural for us to expect atomic scale resolution from ambient AFM. However, sooner or later, we all realize that AFM cannot show atomic-scale details on our own samples and the following questions arise.

Atomic force microscopy (AFM) was originally developed in the 1980s with its first usage in published experimentation taking place in 1986. AFM operation is based on using a cantilever with a sharp probe tip, with an average radius curvature of several nanometers, to scan across a sample surface. The deflections and contortions of the cantilever as its probe tip traces the topography of the sample surface is recorded and then rendered into a computer-generated image for user analysis.

The Atomic Force Microscopy has provided those in research and industry with high resolution nanoscale measurements and imaging, but has long been limited by its relatively slow imaging speed. For certain applications such as crystal nucleation and growth, materials transportation and protein self-assembly process [1-3], it is important to keep track of the topography changes and particle transportation.

The goal of all forms of microscopy is to enable the observation of increasingly smaller objects and their details and characteristics which cannot be seen without aid. Naturally, the course of scientific investigation demands that we eventually test the absolute limits of available metrology techniques and Atomic Force Microscopy (AFM) is no exception. AFM has been demonstrated to be capable of generating images with resolutions high enough to visualize sample features measured in fractions of nanometers—such images are often referred to as having achieved a so-called "atomic resolution".

The addition of nanotechnology to textile development can yield next-generation fabrics for many new exciting applications. Understanding the characteristics of the nanomaterials being integrated with existing fabric matrices is paramount in predicting how targeted enhanced properties will manifest in novel composites. For example, weaving nanofibers into tear-resistant fabric can significantly further increase the fabric's strength without significantly increasing its weight.