| Contact Us   Global

Optical Property - Photoconductivity  

04-solar-cells-1

Topography (left image) and photocurrent (right images) with laser source on (top right image) and laser source off (bottom right image) show the effect of light in current generation; note the increased amount of photo-induced current in the upper image.

 

Park AFM Productivity in Action

Jeongjin Lee, Inhee Choi, Surin Hong, SuSeung Lee, Young In Yang, Younghun Kim, Jongheop Yi; Construction of pcAFM module to measure photoconductance with a nanoscale spatial resolution;  Ultramicroscopy 108 (2008) 1090– 1093 
Equipment: Park Systems XE-150

Abstract: A photoconductive atomic force microscopy (pcAFM) module was designed and the performance was tested. This module consisted of three units: the conductive mirror-plate, the steering mirror and the laser source. The module with a laser irradiation unit was equipped to a conventional conducting probe atomic force microscopy (C-AFM) instrument to measure photoconductance in a nanoscale resolution.

As a proof-of-concept experiment, the photo-conductance of aggregated fullerene on indium tin oxide (ITO) substrate was measured with this module. The electrical signals (currents) of aggregated fullerene under the conditions of laser on/off at about -10V sample bias voltage were -100 to -160 nA and 0 to -20 nA, respectively. Results indicated that the pcAFM with this module allowed one to observe photoinduced changes of electrical properties in nanodevices with nanoscale spatial resolution.

 

04-solar-cells-2

Fig 3. (a)3-D topography of the contact point for the I/V curve measurement and (b) the measured I/V curve. The resistance was decreased by a factor of 5~100. The arrow in (a) indicateds the point at the slope of the sub-circle line, ca, 10 nm height from the boom. At this point, the electrical signals (currents) of aggregated fullerene under the conditions of laser on/off at about -10V sample bias voltage were -100 to -160nA and 0 to -20nA, respectively.


Sample: 

 -  Solar Cell

Image Conditions: 

 -  Contact  Mode AFM
 -  Tr-PCM
 -  Force ( ?? nN)
 -  Scan Speed (?? Hz)

System Requirement:  

 -  Closed-loop AFM System
 -  Conductive AFM

The Benefits

Park AFM series offers many modes that are well suited for phtoonic devices and materials. In particular, Time-resolved Photocurrent Mapping (Tr-PCM) offers the ability to obtain the conductivity data with the AFM laser turned off (at alternative scan lines) so  time resolved photo-induced current can be measured:

a) with topography
b) with nanoscale spatial resolution
c) without interference from the AFM laser source.

Experience our product's high-quality, precise, and long life backed by our worldwide service network. We are strongly committed to maintaining the quality of our products, making us a trustworthy choice for all your repair and maintenance needs.

We await your inquiry and will arrange for you to speak with a specialist today to explore tailored solutions for your research needs. Please fill out the form now, and we will promptly get in touch with you.

Don't miss out on new product announcements, the latest tech insights, special events, and more. Subscribe now to receive regular updates straight to your inbox!