Department of Biological Chemistry, Ariel University, Ariel, Israel
T. Zidki
This email address is being protected from spambots. You need JavaScript enabled to view it.



Pt°-NPs, prepared by the reduction of PtIV salts with borohydride, do not catalyse the reduction of water in the presence of the strongly-reducing ˙C(CH3)2OH radicals. However, supporting the same metal nanoparticles (M°-NPs) with SiO2 alters the catalytic properties enabling the reaction. This effect depends both on the nature of M° and concentration of the composite nanoparticles. At low nanocomposite concentration: for M = Au nearly no effect is observed; for M = Ag the support decreases the catalytic reduction of water and for M = Pt the support initiates the catalytic process. At high nanocomposite concentration: for M = Au the reactivity is considerably lower and for M = Ag or Pt no catalysis is observed. Furthermore, for M = Ag or Pt H2 reduces the ˙C(CH3)2OH radicals.