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to pattern nanoscale shapes on 
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is applied to the tip to generate 
an oxide pattern on a metallic or 
semiconductor substrate in the 
bias-assisted or anodic oxidation 
method. The 3D image of oxide 
patterns formed through Park 
AFM nanolithography shows 
the types of nanometer-sized 
structures that can be fabricated 
with angstrom level scanning 
precision using SmartScanTM 
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Q&A with Estephany 
Santiago, winner 
“Most Promising Future 
Application” Poster 
at NanoScientific 
Symposium for a 
Changing World

What was it like to receive the 
NanoScientific Most Promising Future 
Application Award?
It was an honor and a pleasant surprise 
that my research can be considered for 
a promising application gives me the 
motivation to keep working towards new 
applications.

Did you enjoy the NanoScientific 
Symposium and would you 
recommend it to others?

The NanoScientific symposium is a great 
symposium, the best online experience 
that I had until now, very well organized 
with a great interactive website and 
with great presentations/posters. I will 
recommend all my colleagues and friends 
to join the upcoming symposiums.

What is your hope for your research 
to expand so it can be offered to clean 
water across the world?
My hope is that governments and private 
companies are encouraged to use new 
environmentally-friendly alternatives 
and invest in projects like this to take 
advantage of water and its reuse. It is 
urgent and mandatory that we focus on 
treating and reusing the water we throw 
away, to reduce our environmental impact 
and help the most needed communities.

Welcome to the 21st edition of 
NanoScientific. As we look into the 
beginning of a new year, NanoScientific 
has a few surprises coming out. First, 
we will introduce NanoScientific TV, 
compelling interviews and videos of 
the leading-edge nano researchers, 
a  sneak peek into nanotechnology 
of tomorrow.  We will also introduce 
NanoScientific App, which will give you 
easier access to submit abstracts, read 
articles online and network with others 
using the new NS Community Forum.  

We have published articles in this issue 
from four of our young presenters 
at NanoScientific Symposium for a 
Changing World, including Winner 
of “The Most Promising Future 
Application Award” at the Poster 
Exhibition, Estephany Santiago, with 
her article Magnetic Nanoscavangers: 
The New Trend To Improve Water 
Quality and a short Q&A from her 
below. Congratulations for all of 
our winners at NSCW, Best Poster – 
Lynn Krushinski; Committee Choice 
– Cody Leasor; Most Promising 
Future Application – Estephany 
Santiago;Committee Choice – Hang 
Ran; Microscopy Award – Myunghoon 
Choi; Best Presentation – Louis 
Rogowski; Most Promising Future 
Application – Piran Kidambi and to all 
the presenters who gave inspiring talks 
about future research that will improve 
our world.  In this issue, you will find 
four of these presenters’ articles with 
research leading to new approaches 
in understanding nanoscience 
which were presented at the Virtual 
NanoScientific Symposium.  Next year, 
in 2021, we are planning many more 
virtual NanoScientific Symposiums 
with an in person option, if possible. 

Stay tuned for dates of these events.

I am also proud to announce a 
new member to the NanoScientific 
Board, Marine Le Bourer, CEO of 
NanoTechnology World Association.  
Marine has been a huge collaborator 
with NanoScientific for several years 
and we are glad to have her as an 
official member of the board. 

We pledge to continue to bring you 
exciting articles and symposiums 
that highlight the best of the most 
creative scientific minds of our 
time, who collectively are elevating 
nanotechnology to great new 
heights.  We applaud the intensity and 
dedication that nano researchers put 
into the effort to unravel the mysteries 
of science one atom at a time. It is our 
honor to report on their achievements. 

Stay safe during the New Year and 
may you have a very prosperous and 
rewarding year to come.

Keibock Lee
Editor-in-Chief

Keibock Lee, 
Editor-in-Chief
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Introduction
Reusing water is mandatory in regions 
where water scarcity is due to climatic 
conditions, but also it offers the 
opportunity to mitigate water pollution by 
reducing the discharge of wastewater to 
natural surface waters.[1,2] The challenge 
is to develop sustainable processes to 
recover clean water from wastewater 
avoiding the use of non-degradable 
materials (synthetic polymers and 
resins), keeping low energy consumption 
and diminishing the investment cost 
to operate the technology. Water 
conditioning technologies such as 
inverse osmosis, chemical precipitation, 
ion exchange, and electrochemical 
removal, are generally used to improve 
water quality and aesthetics (such as 
alkalinity and hardness) after primary and 
secondary processes.[3,4] However, all of 
them are onerous and require meticulous 
maintenance to keep efficient operations 
and improve water quality.[3,5,6] In this 
pathway, we propose for the first time, 
the use of magnetic nanoscavengers 
with high potential to remove hardness 
and alkalinity from reclaimed water (RW).  
With this innovation we look to increase 
the water potential reuse in a simple 
magnetic contact stage to trap salts. 

In this paper three types of eco-friendly 
magnetic nanoparticles were prepared 
using chitosan, nanodiamond powder, 
and grafted chitosan. All of them were 
coupled with magnetite nanoparticles 
to obtain magnetic chitosan (MCH), 
magnetic nanodiamond (MND), and 
magnetic carbamoyl chitosan (MCCH). 
All the materials were characterized, 
previous their use, by FT-IR, STEM, Zeta 
Potential, DLS, and TGA studies, proving 

the binding between magnetite and the 
modifiers. Furthermore, RW in contact 
with magnetic nanoscavengers was used 
as a model to evaluate their alkalinity and 
hardness removal capacity. We found out 
that each magnetic nanoscavenger proved 
to be effective for trapping and removing 
alkaline carbonates from reclaimed water, 
and we demonstrated it by different 
techniques. At the same time, we have 
the possibility of recovering them for 
further use, reducing the operation cost. 
Resulting residues are not at all toxics and 
do not require special handling. With all 
these characteristics we can classify the 
magnetic nanoscavengers as sustainable 
nanomaterials.

Experimental
Low molecular weight chitosan and 
nanodiamond powder were used as 
obtained from the suppliers, Carbamoyl 
Chitosan was prepared with the 
methodology reported by Martinez-Quiroz 
et al. [7] Magnetic nanoparticles and 
Magnetic nanoscavengers (MCH, MND, 
MCCH) were synthesized via chemical 
co-precipitation under alkaline condition 
inspired in the methodology reported by 
Liu et al[8] with slight modifications. All 
the materials were characterized by SEM/
STEM (Tescan Lyra 3GM), FT-IR (Shimadzu 
FT-IR Spirit ATR mode), TGA (Perkin Elmer 
equipment TGA 4000, DLS and Z potential 
(Anton Paar Litesizer 500)
RW samples were taken from the 
wastewater treatment plant “La Morita” 
(Tijuana, México). With those samples 
we prove magnetic nanoscavengers 
effectiveness to remove alkalinity and 
hardness. 
The RW was treated with the four 
magnetic nanoscavenger to study the 

improvement of the water quality in 
terms of alkalinity and hardness removal. 
This study was performed at pH 7, 8, 
and 9. A dosage of 30 mg per liter of 
water of magnetic nanoscavenger (MNP, 
MND, MCH, MCCH) was weighed and 
then placed into the RW sample at the 
pH previously adjusted. The solution 
was sonicated for 5 minutes and then 
placed into an orbital shaker for 10 
minutes at 360 rpm. After this time, 
the nanoparticles were recovered by 
magnetic decantation. Alkalinity and 
hardness were measured with standard 
methods for that purpose.

Results and discussion
RW original characteristics are shown 
in table I. Special attention is posed 
on alkalinity and hardness, since these 
parameters are among those that need to 
be improved to increase water potential 
reuse.  The first strategy was done 
measuring the Zeta potential of raw RW, 
as well as the hydrodynamic diameter 
of residual suspended particles, for 
further comparison with Zeta potential of 
magnetic nanoscavengers dispersions. 
Figure 1 illustrates the nanometric 
conception of magnetic nanoparticle 
with the three different types of 
nanostructures. These molecular 
assemblies were obtained by the 
coprecipitation method and its stability 
was tested by several techniques.  Figure 
2. shows the physical and chemical 
properties of magnetic nanoscavengers 
by FT-IR, TGA, Zeta Potential, DLS and 
STEM, proving the suitable binding 
between magnetite and the modifiers. 

 Among the magnetic nanoscavengers 
(MND, MCH and MCCH) the surface 
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chemistry can be related to its physical 
aspect.  For example, particle size vs. Zeta 
potential suggests that MCCH is composed 
of very thin particles that has an acid-base 
performance. Later on SEM images show 
the low agglomeration level due to the 
carbamoyl benzoic acid incorporated to 
the magnetic nanoparticle.  In contrast 
MCH shows larger particles and also a 
completely opposite DLS profile.

Figure 3a. corresponds to the Zeta 
potential and DLS practiced to RW, 
showing low Zeta potential values at 
pH<4 and negative values reaching -14 
mV at pH 10. This result is certainly due 
to water content. In contrast DLS shows 
larger particles at greater pH suggesting 
some salts precipitation when diminishing 
proton concentration.  In Figure 3b a bar 
graph shows the alkalinity and hardness 
of RW at three different pH values that 
will serve to estimate the percentage of 
alkalinity and hardness removal when 
magnetic nanoscavenger are in direct 
contact with RW.

Figure 4. allow to evaluate the action 
of magnetic nanoscavengers by the 
hydrodynamic diameter and Zeta 
potential.   These techniques are 
commonly used to characterize colloidal 
nanoparticles; and in this study both 
of them demonstrated to be important 
tools to evaluate water quality before and 
after a conditioning process.  Figure 5. 
corresponds to the final result of alkalinity 
and hardness removal at three different 
pH for the four magnetic nanoscavengers.  
Concerning MCH and MCCH they showed 
to be the most performant for hardness 
removal.  In the case of alkalinity MCH and 
MCCH are doing the same effect at pH 9. 
MCH showed to be the more performant 
nanoscavenger, in particular at pH 8, that 
is the closest value to the raw RW. 
 
Conclusions 
Thanks to the chemical modification of 
magnetite, it was possible to obtain three 
different magnetic nanomaterials (MND, 
MCH, and MCCH) which act as magnetic 
nano-softeners. We found out that each 
magnetic nanoscavenger proved to 
be effective for trapping and removing 
carbonates from reclaimed water, and we 
demonstrated it by different techniques. 
At the same time, we have the possibility 
of recovering magnetic nanoscavengers 
for further use and reduce the operation 
cost. With all these characteristics we 
can classify the prepared materials as 
sustainable nanomaterials.

Table I. Composition of reclaimed water obtained from the wastewater plant treatment "La Morita" in Tijuana, Baja 
California, México.

Figure 1. Schematic illustration of the formation of the nanoscavengers MND, MCH, and MCCH.

Figure 2. Characterization of Magnetic nanoscavengers by:  FT-IR: a) MND, b) MCH c) MCCH; TGA: d) MND, e) MCH, 
f) MCCH; DLS/Zeta Potential vs pH: g) MND, h) MCH, i) MCCH; and STEM: j) MND, k) MCH, l) MCCH. The white line 
represents a scale bar of 200 nm.
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Figure 3. a) DLS (black line) and Zeta Potential (blue line) of the RW from the WWTP “la Morita”. The pH 
was adjusted using solutions of 0.001 M HCl and 0.001 M  of NaOH. b) Alkalinity(purple) and hardness (pink) 
measurements for RW from the WWTP “La Morita” at pH 7, 8, and 9 expressed as mg L-1 of CO3.  

Figure 4. DLS measurements of untreated RW (purple), and RW treated with MNP (black), MND (gray), MCH 
(yellow), and MCCH (orange) at pH of 7, 8, and 9. d) Comparison of the Zeta Potential measurements of untreated 
RW (purple), and treated with MNP (black), MND (gray), MCH (yellow), and MCCH (orange) at pH of 7, 8, and 9.

Figure 5. a) Comparison of the alkalinity removal of MNP (black), MND (gray), MCH (yellow), and MCCH (orange). 
b) Comparison of the hardness removal of MNP (black), MND (gray), MCH (yellow), and MCCH (orange). At pH of 7, 
8, and 9, expressed as percentage in mg L-1 of CaCO3.
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Introduction
The field of nanotechnology has 
diversified into different areas of research, 
from materials science to biotechnology. 
Many of these applications are based on 
the capability to fabricate or manipulate 
nanostructured materials [1]. One 
convenient technique for structuring, 
manipulation, and fabrication at 
the nanometer scale is atomic force 
microscopy (AFM) nanolithography. All 
AFM nanolithography techniques can 
be classified into two general groups 
in terms of their operational principles: 
force-assisted and bias-assisted 
nanolithography [2]. The force-assisted 
method consists of applying a large force 

to a sharp tip to mechanically modify the 
surface atoms or molecules of the sample 
and produce trenches on the surface. In 
this case, the interaction between the tip 
and the sample is purely mechanical [2]. 
On the contrary, the bias-assisted method 
entails applying a voltage between the 
AFM tip and the substrate in contact 
with the sample. The tip-sample voltage 
induces an electrochemical reaction that 
produces oxide on the surface of the 
substrate [1]. 

This application note demonstrates 
an electrochemical process called 
anodic oxidation using the bias-assisted 
lithography method to create oxide 

patterns on the surface of a silicon 
substrate. The success of this technique 
relies on using the AFM tip as a biased 
cathode to the sample surface. Also, 
the water meniscus around the sample 
acts as an electrolyte for the chemical 
reaction. The environment humidity 
directly influences the size of the 
meniscus [1]. Therefore, this application 
shows nanoscale oxide line formation 
using AFM anodized lithography on 
a Park NX10 AFM system using Park 
SmartLitho, the new nanolithography 
software developed by Park Systems. 
Park SmartLitho [3] can also be used 
for nanomanipulation, scratching 
techniques, and high voltage lithography. 

CONTACT AFM 
NANOLITHOGRAPHY 
BASED ON ANODIC OXIDATION

APPLICATION
NOTE

Armando Melgarejo, Ben Schoenek, Jiali Zhang, and Byong Kim
Park Systems, Inc., Santa Clara, CA, USA

Figure 1. Park SmartLithoTM software. A) Vision & Monitoring view. B) Nanolithography mode panel. C) Lithography design area. D) Object list. E) Objects edit panel.
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Experimental
For this experiment, a Park NX10 AFM 
was used to perform bias-assisted 
nanolithography to draw nanopatterns 
onto a bare silicon substrate. The 
oxide patterns were formed using Park 
SmartLitho. Non-contact mode imaging 
was conducted after the lithography 
process to confirm the successful 
fabrication of the oxide patterns on the 
surface as well as to distinguish the 
surface difference between the oxide 
layers and silicon substrate. A conductive 
AFM cantilever probe (Multi 75G) with a 
nominal spring constant (k = 3 N/m) and 
resonance frequency (f = 75 kHz) was 
utilized in these experiments. 

The Park SmartLitho consists mainly 
of five windows and panels that allow 
the operator to control the complete 

lithography process (Figure 1). In the 
first step, the appropriate alignment of 
the super-luminescent diode (SLD) and 
position-sensitive photodetector (PSPD) 
is verified (Figure 1A). After confirming 
the correct alignment, the operator 
selects the control mode; in this case, 
the setpoint mode was selected. For the 
anodic oxidation, a bias has to be applied; 
in this case, the tip was chosen as the 
desired channel (Figure 1B). In the design 
area (Figure 1C), the operator can insert 
the desired figures and shapes using a 
previous AFM image as a baseline. All 
embedded figures will appear in the object 
list (in this case, just one line) (Figure 1D). 
The operator can change the formation 
order, and the estimated lithography time 
for each figure is provided. Finally, for 
any desired feature, parameters can be 
changed in the object edit panel (Figure 

1E). Parameters such as voltage, load 
force, stroke speed, extend speed, or lift 
speed can be modified to obtain different 
features within the same designed figures.

To start a lithography or manipulation 
process, a baseline image is needed. In this 
case, the baseline image already contains 
one previously-drawn line to compare with 
the line about to be drawn (Figure 1C).  
The image is 1.5 µm by 1.5 µm. The sample 
features small nanoparticles on its surface 
according to the image taken using non-
contact AFM mode.

The lithography process is planned by 
drawing a shape on the surface utilizing 
the software. The AFM operating software, 
Park SmartScanTM, provides the operator 
with offset and easy positioning features. 
The DC bias lithography process is done 

Figure 2. Nanolithography process. (Top Left) Post-scan image.    (Top Right) 3D View. (Bottom) Line profile plotted of green line seen in Top Left.
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in contact mode, and in this case, a bias 
of negative 5.0 Volts is applied between 
the tip and sample. For this experiment, a 
line was drawn at 0.2 µm/s with a 200 nN 
load force. The drawn line is approximately 
1.8 microns in length (Figure 2, Top Left). 
The process takes a couple of seconds to 
complete. As the cantilever is compressed 
to the loading force of 200 nN, the PSPD 
signal moves up, which visually verifies the 
applied pressure.

Results and Discussion
Following the lithography process and 
using Park SmartScanTM, the system is 
switched back to non-contact mode.  An 
AFM cantilever probe is mounted on a 
piezoelectric bimorph shaker, attached 
to the AFM head Z piezoelectric scanner. 
The shaker vibrates the AFM cantilever 
probe at its resonant frequency, which 
is automatically selected along with 
the vibration amplitude. As the probe 
nears the sample surface, the vibration 
amplitude decreases. Likewise, as the 
probe moves away from the surface, the 
amplitude increases. The Z piezo scanner 
moves up and down and adjusts its 
height to maintain a constant vibration 
amplitude. The height adjustment of the 
scanner thus reflects the height change on 
the sample surface. The AFM raster scans 
and detects the height change point-by-
point in the XY-direction to map out the 
three-dimensional surface topography. 
The tip approaches the surface, and the 
image is retaken promptly with the same 
parameters as the baseline AFM image. 
The newly drawn line is clearly visible 
and parallel to the previously drawn line 

(Figure 2, Top Left). Notice the image 
position remains the same, showing the 
control of the XY-scanner, separate from 
the Z-scanner, even at smaller scan sizes. 
In this example, the lithography process 
is done in contact mode, and therefore, 
imaging in non-contact mode is an 
option. However, after the manipulation, 
it is important to take the image using 
non-contact mode to avoid disturbing 
the particles present on the sample. 

After verifying the success of lithography 
process, the final image is taken and 
exported to the analysis software called 
Park XEI™ [4]. In this case, we can see 
that the previously-drawn line is around 
35 nm in width, and the newly-drawn 
one is 47 nm (Figure 2, Bottom). Both 
lines are drawn using the same 
lithography parameters. Nevertheless, 
the line on the right side, drawn first, is 
observed to be narrower than the oxide 
line on the left. This might be due to 
performing the lithography in contact 
mode. In contact mode, the tip is rubbed 
against the sample surface as the lines are 
drawn. 

The rubbing can cause the end of the tip 
to wear out and blunt. The blunted tip 
can fabricate wider oxide lines than the 
ones drawn with a sharper tip [1,5].

We can see that the resulting line-height is 
approximately 1.4 nm for both lines when 
adding another cursor. Park XEI software 
is capable of showing a three-dimensional 
rendering of the image taken (Figure 2, 
Top Right). With the 3D representation, 

we notice that the lines drawn during this 
oxide growth process have a lower height 
than the nanoparticles on the surface.

Conclusion
This application note discusses how 
to use Park SmarthLithoTM software to 
easily design and customize nanoscale 
oxide patterns using Park NX10 AFM. 
With only a few seconds of runtime, this 
simple test case demonstrates a bias-
assisted nanolithography process, which 
successfully generates oxide patterns as 
narrow as 35 nm in width. Although the 
process itself employs contact mode, true 
non-contact mode before and after the 
operation validates that the new oxide line 
is indeed parallel to the line in the baseline 
image. This test case also demonstrates 
the scanning and imaging precision of 
Park’s XY-scanner. Overall, this study 
shows that bias mode in Park SmartLitho 
software is excellent tool for generating 
well-defined nanoscale patterns and 
features. 
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Structural studies of polymers are vital, 
since the application of polymer materials 
range from micellar drug carriers 
to bulletproof vests. Their exquisite 
molecular architecture provides polymers 
with a variety of unique properties. The 
ability to image this molecular structure in 
real-space is, therefore, critical. The only 
technique that can perform such imaging 
is Atomic Force Microscopy. (AFM).

 AFM was developed more than three 
decades1. However, it took a long time 
to utilise AFM to obtain high resolution 
images of polymers. We can certainly 
mention the development of torsional 
tapping to observe single polyethylene 
molecules by Hobbs and Mullin2,3, 
bimodal tapping by Proksch4 and higher 
eigenmode imaging by Korolkov5. The 
latter technique, unlike others, does not 
require any special cantilevers or custom-
modified AFM components. In this work, 
we have implemented this technique on a 
commercial AFM – Park Systems NX20 – to 
achieve molecular resolution on a real-
world sample of Teflon.

Polytetrafluoroethylene (PTFE), commonly 
known as Teflon, is a fluorocarbon solid 
that has one of the lowest coefficients 

of friction. Therefore, it is widely used 
as a material with low adhesion or as 
an inert coating.  Despite its chemical 
simplicity, PTFE exists in four different 
crystalline phases that have been studied 
with electron diffraction techniques6,7. 
Interestingly, no high resolution AFM data 
of Teflon have been published to date.

Teflon is known to be a semi-crystalline 
polymer7. Figure 1 shows a set of large 
scale images of a Teflon surface. A 100 µm 
x 100 µm image (Fig. 1 a and b) already 
shows two distinctive areas: large 20 µm 
domains and rope-like areas connecting 
them. A closer look at domain areas 
reveals their highly directional nature. 
A high resolution phase image (Fig. 1d) 
shows predominantly crystalline regions 
separated by smaller amorphous regions 
on the surface of the polymer. These 
crystalline domains exhibit flat terraces as 
observed in Figure 1c and d.

On the following height and phase 
images (Figure 2), we examine these 
flat terraces a bit closer. A 100 nm x 100 
nm height image (Fig. 2a) shows ~5Å 
steps with sharp edges. Corresponding 
phase images (Fig. 2b and c) reveal true 
molecular nature of these flat steps – we 

can clearly resolve single molecules with 
a period of 5.6Å. A cross-section (Fig. 
2d) gives a clear periodic structure of 
the terrace. From this cross-section, we 
can also measure the width of a single 
line at full width at half maximum being 
3.5Å. This determines the maximum 
resolution achieved on this sample. When 
comparing the observed period of 5.6Å to 
the reported diffraction data of PTFE unit 
cell a = 5.66Å7, we can note a remarkable 
agreement. 

Conclusion
To conclude, we have demonstrated a 
straightforward practical approach for 
high-resolution imaging using higher 
eigenmodes of a standard cantilever in 
tapping mode on a commercial large-
scale NX20 Park Systems AFM achieving 
molecular resolution of a Teflon sample. 
AFM, a surface sensitive technique 
which is always confined to the utmost/
outermost surface layer, is able to 
accurately reproduce results obtained 
from volume average techniques. Thus, 
proving that AFM is an important tool 
in the investigation of the molecular 
structure of polymers. In fact, AFM is able 
to provide more structural information 
by shining a light onto the amorphous 

HIGH RESOLUTION IMAGING OF 
SINGLE PTFE MOLECULES ON 
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Figure 1. Large-scale height and phase tapping mode images of a Teflon surface. a – height image, 512 x 512 px, scan rate 0.5 Hz. b – phase image acquired simultaneously 
with image A. c – phase image, 512 x 512 px, scan rate 4 Hz. d – high resolution phase image showing both crystalline and amorphous regions, 512 x 512 px, scan rate 4 Hz. 
Captured by Park NX20 Large Sample AFM.
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regions of Teflon – something that 
diffraction techniques cannot easily 
achieve. For instance, a phase image (Fig. 
2b) shows that PTFE molecules extend 
from well-ordered crystalline regions 
further into the amorphous region of 
the polymer. The highly localized and 
high resolution nature of AFM places it 
in a unique position to investigate the 
structure of polymers in real space.

Read more and join the “Polymer 
World via AFM” Webinar Series:
 www.parksystems.com/polymerworld
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Figure 2. High resolution AFM images of a Teflon surface showing single PTFE 
molecules. a – height image, 512 x 512 px, scan rate 2Hz. b – phase image, 512 512 
px, scan rate 4Hz. c – phase image, 512 x 512 px, scan rate 6Hz. All images were 
acquired using a 3rd eigenmode of Multi75Al-G cantilever at 1.1Mhz and set point 
of 1.15nm. d – a cross-section illustrates the periodicity of the terraced surface. 
Captured by Park NX20 Large Sample AFM.
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Abstract
Carbon-based materials are being used 
increasingly in various applications 
recently. This is primarily attributed to 
their customizable nature and multiple 
allotropes. Carbon could be sourced 
naturally as well as produced by synthetic 
methods for the further processing steps 
into customized forms such as sheets, 
wires, quantum dots, powder, granules, 
pellets, rods, tubes, composites, etc. 
From the viewpoint of the system working 
cycle, behavioral characterizations are 
essential to substantiate the applicability 
of a material. Several analytical and 
characterization techniques are effectively 
put into use towards qualitative as well as 
quantitative estimation, measurement, 
and verification. In this study, powdered 
activated charcoal (activated carbon), 
lampblack (carbon black), and powdered 
graphene (graphene) are subjected to 
investigations such as x-ray diffraction 
(XRD), light microscopy (LM), scanning 
electron microscopy (SEM), infrared 
(IR) thermal imaging, electrical probing 
(Ω), and chemical sampling, and the 
observations are assessed and correlated 
with pertinent applications.

Keywords: Characterization, Carbon 
black, Activated carbon, Graphene, 
Material.

Introduction
Carbon exists abundantly in various forms 
which could be acquired, synthesized, 
and tailored towards their interesting 
physicochemical, thermal, mechanical, 
electrical, magnetic, and optical 
properties. The current study attempts 
to underline the efficacy of various 
characterization methods and relate them 
to carbon’s appositeness in multifaceted 
applications [1,2,3,4].
Materials and Methods
Lampblack is synthesized from 
Panchadeepa oil, a heterogeneous 
lipid constituted by ghee and 
plant oils, subjected to incomplete 
combustion and vapor-deposition 
upon copper. Activated charcoal 
(medicinal grade) was procured from 
HealthVit. Industrial-grade graphite 
was acquired and exfoliated into 
graphene. Tetrahydrofuran (THF), 
Dimethylformamide (DMF), and distilled 
water (AR/ACS) were sourced from the 
Organic Chemistry Laboratory, Veltech 
Research Park. Indian Pharmacopoeia 
grade paraffinum liquidum was obtained 
from Tudor Laboratories [5].
XRD scan was conducted on Bruker 
instrument with copper anode, K𝛼1 
= 1.5406 Å, K𝛼2 = 1.5444 Å along the 
goniophotometer axis from 100 - 900 for 
every 0.020, and analyzed on OriginLab.

Eastcolight HK Micro-Science light 
microscope was used to capture light 
micrographs of the carbon materials 
placed on a microscope slide, with 
600-1200x magnification. After image 
optimization, photos were taken using 
Xiaomi Redmi Note 3 Pro smartphone 
equipped with 16 MP and phase-detection 
autofocus. Image post-processing was 
done using LunaPic.

SEM was performed with Tescan VEGA 
3SBH at an accelerating voltage of 15 
kV, working distance 15.16-15.62 mm. 
After adjusting the optimized image, 
magnification, average view field, and 
resolution were set to 1kx, 126.5 µm, and 
20 µm, respectively.

Carbon samples were refrigerated at 277K, 
and then thermal imaging was done using 
Fluke Ti100 IR Camera. The IR images were 
interpreted on Fluke SmartView IR Analysis 
Reporting Software [5].

Electrical resistances of the carbons in 
liquid paraffin were measured using 
Crenova MS8233D Multimeter [5].

For testing solubility, 5 mg of each solute 
was mixed in 100 mL of each solvent - 
water, 90% THF, 90% DMF, and IP liquid 
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Table I. XRD Peak Analysis
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Results and Analyses
XRD of carbon materials corroborates 
the crystalline nature. From Table I, it 
is deduced that the % crystallinity in 
Graphene >>> Carbon black > Activated 
carbon. The crystallite size of carbons is 
in accordance with the amorphousness, 
i.e., Activated carbon > Carbon black > 
Graphene.
 
LM resolution limits its depth of analysis, 
and hence, properties such as particle 
size distribution, porosity, surface 
topography cannot be quantified 
to a large extent. From Figure 1, 
the morphology is very uniform for 
Graphene > Activated carbon > Carbon 
black. Carbon black spreads erratically, 
forming layers and shadows in imaging. 
Activated carbon and carbon black have 
a higher surface area than graphene 
since, for an equivalent quantity, 
graphene is less scattered. Powdery 
form yields a more pronounced airgap
in activated charcoal [5].
 
SEM images in Figure 2 offer more 
quantifiable and scalable data than 
LM. Secondary electron detectors 
demonstrate topographical variations 
- clustery porous activated carbon and 
carbon black, and fractal periodic flaky 
graphene. Graphene and activated 
carbon have voids, whereas carbon black 
consists of agglomerates. Backscattered 
electron detectors construe the elemental 
composition as image contrast, and 
the carbonaceousness in Graphene > 
Activated carbon > Carbon black.

The forward-looking infrared images in 
Figure 3 indicate a uniform temperature 
distribution across carbon black 
and graphene. However, activated 
carbon coated glass slide exhibits two 
different temperature distributions, the 
other distribution being congruent in 
dimensions but differing by an average 
temperature of +5K at a distance 
throughout. This might be due to the 
amorphous nature of activated carbon 
and phonon scattering.
 
The images in Figure 4 correspond to 
those in Figure 3, with the former being a 
three-dimensional representation of the 
latter. The plane into the paper/screen 
corresponds to the two-dimensional 
surface of the carbon-coated glass slide, 
and the normal axis to it represents the 
temperature variation map. Graphene 

Figure 1. Light micrographs of a) Activated carbon, b) Carbon black, c) Graphene.

Figure 2. Scanning electron micrographs of a) Activated carbon, b) Carbon black, c) Graphene.

Figure 3. FLIR of microscopic glass slides with a) Activated carbon, b) Carbon black, c) Graphene [5].

Figure 4. 3DIR graphs of liquid paraffin dispersed with a) Activated carbon, b) Carbon black, c) Graphene [5].

Table II. Solubilities of carbons in different solvents

Table III. Ohmic measurements [5]
Resistances in Table III indicate that electrical conductivity of 
Graphene >> Carbon black > Activated carbon.
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and activated carbon exhibit a near-
symmetrical heat flux profile. Activated 
carbon exhibits an enclosed heat 
variation with the outward heat flux 
getting flattened, whereas graphene 
exhibits a similar variation with the heat 
flux curving outwards in a continuous 
fashion as it stems from the inward. The 
heat flux from carbon black is distorted 
and is asymmetrical.

Solute-solvent molecular interactions 
vary based on miscibility, homogeneity, 
and affinity of materials. All carbons 
repelled water molecules, floating on 
water in spite of repeated stirring. The 
three carbons are heterogeneous in liquid 
paraffin, forming a suspension. Carbon 
black, after ultrasonication in THF, and 
graphene exhibit homogeneity with DMF 
and THF. Activated carbon is averse to 
THF and DMF. Despite molecular agitation 
by ultrasonic waves thrice, it exhibited 
only partial solubility. The observations 
are briefed in Table II.

Discussion
Material crystallinity, the fundamental 
of solid-state physics [6], is perceptible 
from XRD results yielded in Table I. 
Paramount insights into the morphology, 
surface topography, stacking, and 
carbon composition were obtained 
from the micrographs in Figures 1 and 
2, which could be applied in interfacial 
surface tension in antenna coating [7], 
platelet formation in layered-printing 
[8], and conductive filling in voids of 
ultracapacitor electrode [9]. From Figures 
3 and 4, the thermal flux and superficial 
heat distribution of carbons after cooling 
were understood, and these would be 
crucial in passive cooling [10], adsorptive 
chillers [11], and nanoscale Joule heating 
[12]. Tangible findings on solute-solvent 
interactions in Table II furnish helpful 
observables from the perspectives of 
industrial pigments, paints, and dyes, 
and tailoring PEM fuel cell catalyst 
support towards overcoming platinum 
catalyst poisoning by hydrophobicity [13]. 
Electrical resistance measurements would 
prove nifty in graphene antennas [14] and 
conductive carbon blacks [15].

Conclusion and Future Scope
In the present work, observations from 
XRD, LM, SEM, IR imaging, solubility, and 
Ω were scrutinized and related to carbon 
applications. The outcomes and impact 
could be furthered by conducting other 

analyses such as TEM, AFM, EDX, 
Raman spectroscopy, ICP-OES, NMR,
TGA, BJH-BET, and molecular dynamics 
for cumulative supplementation.
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Introduction

Sophisticated, high-performing technology 
often requires electrical components 
with advanced material properties [1]. 
For example, TiO2 thin film, a versatile 
compound, is widely used as a charge 
selective transport layer in solar cells 
and as a high capacity anode for Li-Ion 
batteries. For battery applications, this 
material exhibits superior cycling stability 
and Coulombic efficiency compared 
to other transition oxides [2]. Another 
functional material used in advanced 
technology components is SiC, which 
is applied in power devices to improve 
dielectric breakdown field strength, 
bandgap, and thermal conductivity 
[3]. For the battery and semiconductor 
industries to conduct nanoscale electrical 
measurements during manufacturing, 
an innovative and precise nanoscale 
characterization technique for electrical 
analysis is required. 

Conductive Atomic Force Microscopy 
(C-AFM) and Scanning Spreading 
Resistance Microscopy (SSRM) are 
effective techniques for studying electrical 
properties of advanced materials. 
These techniques measure electrical 

properties by monitoring the current 
flowing between the conductive tip 
and the sample during topography 
measurements. Sensitivity in these 
techniques can be further improved 
by controlling the measurement 
environment. A previous study shows that 
using C-AFM in a vacuum environment 
eliminates the layer of contaminants 
(water and hydrocarbons) that form on 
the tip, and prevents oxidation during 
scanning, allowing for a longer tip lifetime 
and better sensitivity [4, 5]. In this technical 
note, a study of two different samples 
with the Park NX-Hivac atomic force 
microscope demonstrates the advantage 
of a high vacuum environment for C-AFM 
and SSRM measurements. The results 
show improved sensitivity and resolution 
in the measurements under high vacuum 
conditions when compared to ambient air.

Experimental

Two samples are selected and investigated 
using a Park NX-Hivac system. The first 
sample is a Silicon Carbide (SiC) MOSFET 
and the second sample is a TiO2 thin 
film deposited on a Au/Ti/SiO2 substrate, 
hereafter referred to as Sample 1 and 
Sample 2, respectively. Images for Sample 

1 are acquired in SSRM Mode using a 
scan rate of 0.5 Hz and a scan size of 1.5 
µm x 1.5 µm. Images for Sample 2 are 
acquired in C-AFM Mode with a scan rate 
of 1.0 Hz and a scan size of 1.5 µm x 1.5 
µm. In SSRM imaging, a full diamond 
tip CAMS FDP (nominal spring constant 
k = 27 N/m) is used, while a CDT-Contr 
(nominal spring constant k = 0.5 N/m) is 
used in C-AFM. A silver paste is applied on 
top of the sample, as well as on the metal 
sample holder under the sample to ensure 
electrical connection from the bias line. 
The samples are measured under ambient 
air and vacuum (in the low 10-5 Torr range) 
conditions to understand the influence 
of the environment on C-AFM and SSRM 
measurements. 

C-AFM and SSRM operate in the Contact 
mode regime, and their imaging principles 
are relatively similar. When DC bias is 
applied, the current flow between the 
conductive tip and sample is monitored, 
and the electrical properties are measured. 
The conductive tip acts as an electrode. 
Generally, the current has a very low 
magnitude; therefore, a current amplifier 
is needed to amplify the current signal. 
The current amplifier both increases 
and monitors the current, which is 
then processed into an image. In this 
experiment, the applied DC bias is +2.5 
V for Sample 1 and +4 V for Sample 2. 
The main differences between the two 
techniques are their applications, and the 
type of current amplifiers needed. C-AFM 
is commonly used for current variations 
mapping, while SSRM measures the local 
resistance and conductance of a surface. 
The SSRM mode of Park Systems uses a 
logarithmic current amplifier to measure 
a wide range of resistance distribution in a 
small area. In contrast, C-AFM mode uses a 
linear current amplifier. 

Figure 1 shows a schematic view of a 
C-AFM and SSRM set-up on the Park 
NX-Hivac system. The AFM cantilever 
tip, coated with a conductive material, 
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Figure 1. Schematic Illustration of C-AFM and SSRM AFM
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connects to a current amplifier and can 
thus measure a wide range of current signal. 
The current amplifier measures the electric 
current flow at the tip-sample contact 
point. As in other AFM modes, the super 
luminescent diode (SLD) light beam and 
position sensitive photodiode (PSPD) serve 
as feedback (Feedback Control) to detect 
topographic features.   The AFM controller 
then measures and processes these 
changes to obtain the topography and 
electrical current C-AFM or SSRM image.

Results and Discussion

Figure 2 presents topography and 
resistance images of Sample 1 obtained 
in ambient air and high vacuum using 
SSRM mode. The topography images in 
Figures 2a and 2b show a polished surface 
with a height difference of 109 nm on 
the cross-section. However, they do not 
contain significant information related 
to the device pattern. The measurement 
positions in both images are the same in 
ambient air and in high vacuum, as can 
be seen in their matching topography 
line profiles in Figure 2c. Therefore, 
environmental comparison is possible. 
Figures 2d and 2e are the resistance 
images taken simultaneously with the 
topography images in Figures 2a and 2b, 
respectively. By Figures 2d and 2e, the 
resistance image taken in high vacuum 
shows more features and details than the 
one taken in air. In fact, line profiles of 
the resistance images, as shown in Figure 
2f, show a significant difference in the 
resistance distribution in air and vacuum. 
Since there is no oxidation or water layer 
in the vacuum, the SSRM shows a higher 
sensitivity in a vacuum than in air due to 
the improved electrical contact between 
the tip and sample. Characterizing 
electrical properties with this level of 
detail is essential for understanding the 
functionality of a MOSFET device.

Figure 3 presents the current images of 
Sample 2 obtained in ambient air and 
high vacuum using C-AFM mode. Small 
grain-structures with distinct contrast are 
visible in the current image obtained in 
high vacuum, while the current image in air 
shows less detail. The maximum current 
measured in high vacuum is 827 nA, while it 
is 59 nA in air. The line profiles of the current 
images, as shown in Figure 3c, confirm that 
a consistently larger current is measured 
in high vacuum than in air. This improved 
electrical sensitivity in high vacuum is 

likely due to the removal of water and 
contaminants that are typically present on 
the sample surface in air. 

Conclusion

This application note examines the 
current image quality of the SSRM and 
C-AFM modes of the Park NX-Hivac 
atomic force microscopy system. Two 
samples, a SiC MOSFET and a TiO2/Au/
Ti/SiO2, are tested under ambient air 
and high vacuum conditions to study the 
sensitivity of electrical measurements 
using both modes. The results show 
that in high-vacuum environments, the 
sensitivity of the electrical characterization 
improves.  In a high vacuum, the residues 
are relatively negligible, which increases 
the electrical contact at the tip-sample 
surface.   Therefore, the current can pass 
more freely and expose the current contrast 
of smaller features with a higher definition. 
In conclusion, operating the Park NX-Hivac 
system in high vacuum offers detailed 
insights for various nanotechnology 
applications and allows for a better 

understanding and control of the electrical 
behavior of advanced materials and devices 
at the nanoscale.
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Figure 2. Topography and resistance images measured on a SiC MOSFET sample in ambient air and high 
vacuum using SSRM mode. (a) Topography in air (b) and vacuum (c) and the corresponding line profiles. 

Figure 3. Current images measured in TiO2/Au/Ti/SiO2 sample in ambient air and high vacuum using 
C-AFM mode. (a) Current image in air (b) and vacuum (c) and the corresponding line profiles. 
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Abstract—Thin films are ubiquitous, 
with uses ranging from optoelectronics 
to antibacterial coatings. Unfortunately, 
precisely quantifying how the choice of 
substrate influences epitaxial growth 
remains an unsolved problem. Here, a 
novel thin film of holmium oxide with 
record-high paramagnetic saturation 
was grown on a variety of substrates. 
Conventional attempts to extract epitaxial 
information to characterize the growth 
mechanism were ineffective, due to 
the unique size regime of the product. 
Instead, a signal-processing inspired 
Fourier method was used to elucidate 
information on epitaxial ordering from 
purely topographical data, avoiding the 
pitfalls of atomic-level diffraction. Further, 
we define and utilize an inner product-
based metric termed a q-score that can 
quantify the relative degree of ordering of 
epitaxial crystallites. The q-score provides 
a direct measure of epitaxy, enabling 
more quantitative future studies of thin 
film growth. 

INTRODUCTION

Magnetic resonance force microscopy 
(MRFM) is an  emerging technology that 
offers the promise of single nucleon 
detection in individual biological samples 
or nanodevices [1]. Such a device 
functions like a nanoscale magnetic 
resonance imaging (MRI) machine, 
applying a radiofrequency (RF) current 
and measuring response with a magnetic 
cantilever, all against the background 
of a strong uniform magnetic field [2,3]. 
Effective MRFM demands a large signal to 
noise ratio (SNR). From [3], this is:  

Since the SNR is quadratically dependent 
on the magnetic field gradient ∂B/∂x, 
developing strong, new magnetic 
materials is important for optimizing 

MRFM. Recently, a new crystal phase of 
holmium oxide thin film with record-
high paramagnetic saturation (above 2 
Tesla) was synthesized using a thermal 
physical vapor deposition technique 
[4]. Holmium films grown on different 
substrates (A-plane sapphire, C-plane 
sapphire, and amorphous quartz) under 
otherwise identical deposition conditions 
have different morphological properties, 
suggesting that the substrate controls 
film growth. This direction is not a 
chemical process, as the two sapphire 
substrates are chemically identical, and 
growth occurs in a regime well below the 
vaporization of all the substrates [5,6]. 
Rather, the different crystal structures 
and orientations of the substrates visually 
appear to direct holmium growth in 
different ways. For example, in Figure 1, 
we see the holmium oxide film grows into 
crystalline triangles regardless of surface, 
but on the Sapphire C substrate (Fig. 
1b), they seem to be aligned with one 
another. 

When thin films grow, individual atoms 
land on the surface and then move 
around until they lose their kinetic energy 
and reach a thermodynamic minimum 
[7]. This can occur in different ways 
depending on how the landing atoms 
align with the substrate crystal atoms. 

When films grow on a substrate, the 
substrate can direct their growth to align 
with its own crystal structure, creating a 
periodic result [8]. This is termed epitaxial 
growth. 

To determine whether different substrates 
are directing growth of different crystal 
phases of holmium oxide, we attempted a 
variety of standard diffraction techniques, 
including coarse x-ray diffraction (XRD) 
and more fine-grained elastic recoil 
detection (ERDA) and transmission 
electron microscopy (TEM). Most of 
these techniques determine bulk crystal 
structure and elemental composition, 
ultimately determining that we have a 
new phase of holmium oxide. However, 
they operate at the wrong size scale 
to determine whether the crystallites 
themselves are oriented. XRD and ERDA 
are too coarse to detect individual crystal 
grains reliably [9,10]. Available TEM only 
operates at a small domain size (~50 nm), 
while the crystallites in question are on 
the order of 100 nm. Although TEM has 
been successful at studying epitaxial 
growth in the past, it has traditionally 
been done on much thinner and smaller 
nanostructures [11] or been focused 
on defects [12]. In other words, no 
techniques were successful at revealing 
the orientation of individual crystal grains 
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Fig. 1. Atomic force micrographs of holmium oxide thin film growth on Sapphire A (a) and Sapphire C (b) substrates. 
Upon visual inspection, the triangular crystallites appear to be randomly oriented with respect to one another in (a), but 
roughly aligned with the drawn red triangle in (b). 
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Abstract—Thin films are ubiquitous, with uses ranging 
from optoelectronics to antibacterial coatings. 
Unfortunately, precisely quantifying how the choice of 
substrate influences epitaxial growth remains an unsolved 
problem. Here, a novel thin film of holmium oxide with 
record-high paramagnetic saturation was grown on a 
variety of substrates. Conventional attempts to extract 
epitaxial information to characterize the growth 
mechanism were ineffective, due to the unique size regime 
of the product. Instead, a signal-processing inspired Fourier 
method was used to elucidate information on epitaxial 
ordering from purely topographical data, avoiding the 
pitfalls of atomic-level diffraction. Further, we define and 
utilize an inner product-based metric termed a q-score that 
can quantify the relative degree of ordering of epitaxial 
crystallites. The q-score provides a direct measure of 
epitaxy, enabling more quantitative future studies of thin 
film growth.  

I. INTRODUCTION 
agnetic resonance force microscopy (MRFM) is an  
emerging technology that offers the promise of single 

nucleon detection in individual biological samples or 
nanodevices [1]. Such a device functions like a nanoscale 
magnetic resonance imaging (MRI) machine, applying a 
radiofrequency (RF) current and measuring response with a 
magnetic cantilever, all against the background of a strong 
uniform magnetic field [2,3]. Effective MRFM demands a large 
signal to noise ratio (SNR). From [3], this is:   
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, developing strong, new magnetic materials is 

important for optimizing MRFM. Recently, a new crystal phase 
of holmium oxide thin film with record-high paramagnetic 
saturation (above 2 Tesla) was synthesized using a thermal 
physical vapor deposition technique [4]. Holmium films grown 
on different substrates (A-plane sapphire, C-plane sapphire, and 
amorphous quartz) under otherwise identical deposition 
conditions have different morphological properties, suggesting 
that the substrate controls film growth. This direction is not a 
chemical process, as the two sapphire substrates are chemically 
identical, and growth occurs in a regime well below the 
vaporization of all the substrates [5,6]. Rather, the different 
crystal structures and orientations of the substrates visually 
appear to direct holmium growth in different ways. For 
example, in Figure 1, we see the holmium oxide film grows into 

crystalline triangles regardless of surface, but on the Sapphire 
C substrate (Fig. 1b), they seem to be aligned with one another.  
 

  
Fig. 1. Atomic force micrographs of holmium oxide thin film 
growth on Sapphire A (a) and Sapphire C (b) substrates. Upon 
visual inspection, the triangular crystallites appear to be 
randomly oriented with respect to one another in (a), but 
roughly aligned with the drawn red triangle in (b).  
 

When thin films grow, individual atoms land on the surface 
and then move around until they lose their kinetic energy and 
reach a thermodynamic minimum [7]. This can occur in 
different ways depending on how the landing atoms align with 
the substrate crystal atoms. When films grow on a substrate, the 
substrate can direct their growth to align with its own crystal 
structure, creating a periodic result [8]. This is termed epitaxial 
growth.  

To determine whether different substrates are directing 
growth of different crystal phases of holmium oxide, we 
attempted a variety of standard diffraction techniques, 
including coarse x-ray diffraction (XRD) and more fine-grained 
elastic recoil detection (ERDA) and transmission electron 
microscopy (TEM). Most of these techniques determine bulk 
crystal structure and elemental composition, ultimately 
determining that we have a new phase of holmium oxide. 
However, they operate at the wrong size scale to determine 
whether the crystallites themselves are oriented. XRD and 
ERDA are too coarse to detect individual crystal grains reliably 
[9,10]. Available TEM only operates at a small domain size 
(~50 nm), while the crystallites in question are on the order of 
100 nm. Although TEM has been successful at studying 
epitaxial growth in the past, it has traditionally been done on 
much thinner and smaller nanostructures [11] or been focused 
on defects [12]. In other words, no techniques were successful 
at revealing the orientation of individual crystal grains relative 
to each other, which is key to understanding the influence of 
using different substrates on holmium oxide growth and 
designing future experiments.  

Fortunately, techniques from signal processing can be used 
to uncover periodicity that is otherwise not apparent in images. 
In particular, the 2-dimensional Fourier transform is a 
promising tool and is defined by the relation in Equation (2). 
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and then move around until they lose their kinetic energy and 
reach a thermodynamic minimum [7]. This can occur in 
different ways depending on how the landing atoms align with 
the substrate crystal atoms. When films grow on a substrate, the 
substrate can direct their growth to align with its own crystal 
structure, creating a periodic result [8]. This is termed epitaxial 
growth.  

To determine whether different substrates are directing 
growth of different crystal phases of holmium oxide, we 
attempted a variety of standard diffraction techniques, 
including coarse x-ray diffraction (XRD) and more fine-grained 
elastic recoil detection (ERDA) and transmission electron 
microscopy (TEM). Most of these techniques determine bulk 
crystal structure and elemental composition, ultimately 
determining that we have a new phase of holmium oxide. 
However, they operate at the wrong size scale to determine 
whether the crystallites themselves are oriented. XRD and 
ERDA are too coarse to detect individual crystal grains reliably 
[9,10]. Available TEM only operates at a small domain size 
(~50 nm), while the crystallites in question are on the order of 
100 nm. Although TEM has been successful at studying 
epitaxial growth in the past, it has traditionally been done on 
much thinner and smaller nanostructures [11] or been focused 
on defects [12]. In other words, no techniques were successful 
at revealing the orientation of individual crystal grains relative 
to each other, which is key to understanding the influence of 
using different substrates on holmium oxide growth and 
designing future experiments.  

Fortunately, techniques from signal processing can be used 
to uncover periodicity that is otherwise not apparent in images. 
In particular, the 2-dimensional Fourier transform is a 
promising tool and is defined by the relation in Equation (2). 
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relative to each other, which is key to 
understanding the influence of using 
different substrates on holmium oxide 
growth and designing future experiments. 

Fortunately, techniques from signal 
processing can be used to uncover 
periodicity that is otherwise not apparent 
in images. In particular, the 2-dimensional 
Fourier transform is a promising tool and 
is defined by the relation in Equation 
(2). While the most common transforms 
in signal processing work by converting 
between time and frequency domains, 
the 2D transform here operates between 
two spatial regimes: real, physical space, 
parametrized by x,y, and inverse k-space, 
parametrized by u,v. By converting the 
image from real space into k-space 
using an orthogonal basis of complex 
exponentials, patterns emerge that 
can be used to quantify how ordered 
the substrate is [13]. In particular, the 
discrete Fourier transform (DFT, defined 
by Equation (3)) of an image is readily 
implemented using an FFT algorithm in 
MATLAB, as described in [14].  

Note that in (3), X is the total number of 
pixels in the horizontal direction, and 
likewise for Y in the vertical direction. The 
discrete transform sums over all available 
pixels and sets f[x,y]=0 outside the 
observed X by Y region.

Quantifying epitaxy has applications 
beyond holmium oxide thin films. Thins 
films are ubiquitous [15], with applications 
ranging from optoelectronics as in [16] to 
antibacterial coatings as in [17]. In general, 
quantifying the influence of substrate on 
thin film growth, termed epitaxial growth, 
is a challenging problem [8,18]. Most 
literature relies on expensive atom-level 
measurements and can only detect a few 
layers of atoms (~1 nm) worth of epitaxial 
growth [11,12,19], while thin films with 
practical applications are often over 100 
nanometers thick [20]. 

Here, we develop and test a facile 
classification scheme that quantifies how 
ordered thin film growth is using only 
topological data. This approach relies on 
transforming topographical atomic force 
microscopy (AFM) data into k-space and 

comparing the result to the predicted 
Fourier transform of perfect thin film 
epitaxy, as well as measuring maintenance 
of periodicity over large regions of film.

The following notation will be used 
throughout the manuscript: 

f[x,y] denotes the z-height/brightness at a 
given spatial coordinate of an AFM image

F[u,v] denotes the transform of f(x,y); this is 
the FFT in all cases except in section V. 

<A,B> denotes a Frobenius inner product 

A^* denotes the complex conjugate of A

TOPOGRAPHICAL CRYSTALLINITY

It is well known that using different 
substrates can result in the growth of 
different types of crystal grains. There 
are three main cases of thin film growth, 
reviewed extensively in [8] and [15].  

Epitaxial crystalline growth. In the case 
of epitaxial growth, the crystal grains 
align perfectly with the substrate’s crystal 
structure, and the edges of crystal grains 
also align with the substrate and thus align 
with each other. Topographical data of 
this type of growth presents as a perfect 
tessellation of crystal edges. The shape 
of the grains depends on the shape of the 
substrate’s exposed crystal plane. 

Non-epitaxial crystalline growth. In the 
case of non-substrate directed crystalline 
growth, nucleation and growth occurs in 
random directions. Although crystals with 
hard edges can still form, they will not 
be aligned with each other. This can be 
modeled as an assortment of randomly 
oriented crystals, where the shape of the 
crystal depends mostly on the thin film 
material’s intrinsic crystalline properties. 

Random growth. In the case of non-
epitaxial, non-crystalline growth, the thin 
film grows haphazardly on an unordered 
substrate, forming unordered structures. 
This case is largely non-instructive, and 
has no consistent morphological ordering. 

In this experiment, holmium oxide was 
grown on two different crystal planes of 
sapphire, A-plane and C-plane, depicted 
in Fig. 2. The A-plane atomic cross section 
is a rectangular lattice, while the C-plane 
cross-section contains a hexagonal 
lattice. Meanwhile, holmium naturally 

grows into a hexagonal lattice [21] that 
is a close match in terms of lattice strain 
to C-cut sapphire, so it is expected that 
the C-plane sapphire will clearly direct its 
growth, whereas holmium will grow into 
randomly oriented triangular or hexagonal 
crystallites on  the A-plane sapphire. 
The amorphous quartz substrate is not 
crystalline, and thus cannot epitaxially 
direct growth.

 

Fig. 2. Different sapphire crystal planes. 
C-plane sapphire is a hexagonally 
symmetric lattice, while A-plane sapphire is 
more rectangular. 

Since there should be one main set of 
periodic components in the first case, 
and many rotated sets of the same 
kind of triangle in the second case, the 
2-dimensional Fourier transform (FT) 
offers a way to extract the magnitude 
of different periodic components and 
quantify underlying periodicity. The 2D 
FT is based on the same principles as a 
one-dimensional Fourier transform, using 
complex exponential functions of x and y 
as the basis set. 

Since we have discrete images of 512x512 
datapoints, we have to use the DFT 
described in Equation (3) rather than 
the FT described in Equation (2), with 
X=Y=512. Note that this transform works 
theoretically because the AFM signal is 
viewed as a multiplication of the real thin 
film surface with the bed-of-nails function 
in Equation (4), which samples out 
262,144 discrete datapoints from the true, 
underlying, continuous thin film surface.  

Implementing the FFT in MATLAB on a 
representative set of potential crystal 
patterns, it is apparent that the FFT 
of disordered triangles contains the 
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While the most common transforms in signal processing work 
by converting between time and frequency domains, the 2D 
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substrate is [13]. In particular, the discrete Fourier transform 
(DFT, defined by Equation (3)) of an image is readily 
implemented using an FFT algorithm in MATLAB, as 
described in [14].   
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Note that in (3), X is the total number of pixels in the horizontal 
direction, and likewise for Y in the vertical direction. The 
discrete transform sums over all available pixels and sets 
𝑓𝑓𝑓𝑓[𝜕𝜕𝜕𝜕,𝑦𝑦𝑦𝑦] = 0 outside the observed X by Y region. 
 Quantifying epitaxy has applications beyond holmium oxide 
thin films. Thins films are ubiquitous [15], with applications 
ranging from optoelectronics as in [16] to antibacterial coatings 
as in [17]. In general, quantifying the influence of substrate on 
thin film growth, termed epitaxial growth, is a challenging 
problem [8,18]. Most literature relies on expensive atom-level 
measurements and can only detect a few layers of atoms (~1 
nm) worth of epitaxial growth [11,12,19], while thin films with 
practical applications are often over 100 nanometers thick [20].  
 Here, we develop and test a facile classification scheme that 
quantifies how ordered thin film growth is using only 
topological data. This approach relies on transforming 
topographical atomic force microscopy (AFM) data into k-
space and comparing the result to the predicted Fourier 
transform of perfect thin film epitaxy, as well as measuring 
maintenance of periodicity over large regions of film. 
 The following notation will be used throughout the 
manuscript:  
- 𝑓𝑓𝑓𝑓[𝜕𝜕𝜕𝜕,𝑦𝑦𝑦𝑦] denotes the z-height/brightness at a given spatial 

coordinate of an AFM image 
- 𝐹𝐹𝐹𝐹[𝑢𝑢𝑢𝑢, 𝑣𝑣𝑣𝑣] denotes the transform of 𝑓𝑓𝑓𝑓(𝜕𝜕𝜕𝜕, 𝑦𝑦𝑦𝑦); this is the FFT in 

all cases except in section V.  
- < 𝐴𝐴𝐴𝐴,𝜕𝜕𝜕𝜕 > denotes a Frobenius inner product  
- 𝐴𝐴𝐴𝐴∗ denotes the complex conjugate of 𝐴𝐴𝐴𝐴 

II. TOPOGRAPHICAL CRYSTALLINITY 
It is well known that using different substrates can result in 

the growth of different types of crystal grains. There are three 
main cases of thin film growth, reviewed extensively in [8] and 
[15].   

1. Epitaxial crystalline growth. In the case of epitaxial 
growth, the crystal grains align perfectly with the 
substrate’s crystal structure, and the edges of crystal 
grains also align with the substrate and thus align with 
each other. Topographical data of this type of growth 
presents as a perfect tessellation of crystal edges. The 

shape of the grains depends on the shape of the 
substrate’s exposed crystal plane.  

2. Non-epitaxial crystalline growth. In the case of non-
substrate directed crystalline growth, nucleation and 
growth occurs in random directions. Although crystals 
with hard edges can still form, they will not be aligned 
with each other. This can be modeled as an assortment 
of randomly oriented crystals, where the shape of the 
crystal depends mostly on the thin film material’s 
intrinsic crystalline properties.  

3. Random growth. In the case of non-epitaxial, non-
crystalline growth, the thin film grows haphazardly on 
an unordered substrate, forming unordered structures. 
This case is largely non-instructive, and has no 
consistent morphological ordering.  

In this experiment, holmium oxide was grown on two 
different crystal planes of sapphire, A-plane and C-plane, 
depicted in Fig. 2. The A-plane atomic cross section is a 
rectangular lattice, while the C-plane cross-section contains a 
hexagonal lattice. Meanwhile, holmium naturally grows into a 
hexagonal lattice [21] that is a close match in terms of lattice 
strain to C-cut sapphire, so it is expected that the C-plane 
sapphire will clearly direct its growth, whereas holmium will 
grow into randomly oriented triangular or hexagonal crystallites 
on  the A-plane sapphire. The amorphous quartz substrate is not 
crystalline, and thus cannot epitaxially direct growth. 

 

 
Fig. 2. Different sapphire crystal planes. C-plane sapphire is 
a hexagonally symmetric lattice, while A-plane sapphire is 
more rectangular.  

 
Since there should be one main set of periodic components 

in the first case, and many rotated sets of the same kind of 
triangle in the second case, the 2-dimensional Fourier transform 
(FT) offers a way to extract the magnitude of different periodic 
components and quantify underlying periodicity. The 2D FT is 
based on the same principles as a one-dimensional Fourier 
transform, using complex exponential functions of x and y as 
the basis set.  

Since we have discrete images of 512x512 datapoints, we 
have to use the DFT described in Equation (3) rather than the 
FT described in Equation (2), with 𝑋𝑋𝑋𝑋 = 𝑋𝑋𝑋𝑋 = 512. Note that this 
transform works theoretically because the AFM signal is 
viewed as a multiplication of the real thin film surface with the 
bed-of-nails function in Equation (4), which samples out 
262,144 discrete datapoints from the true, underlying, 
continuous thin film surface.   
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While the most common transforms in signal processing work 
by converting between time and frequency domains, the 2D 
transform here operates between two spatial regimes: real, 
physical space, parametrized by 𝜕𝜕𝜕𝜕,𝑦𝑦𝑦𝑦, and inverse k-space, 
parametrized by 𝑢𝑢𝑢𝑢, 𝑣𝑣𝑣𝑣. By converting the image from real space 
into k-space using an orthogonal basis of complex exponentials, 
patterns emerge that can be used to quantify how ordered the 
substrate is [13]. In particular, the discrete Fourier transform 
(DFT, defined by Equation (3)) of an image is readily 
implemented using an FFT algorithm in MATLAB, as 
described in [14].   
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Note that in (3), X is the total number of pixels in the horizontal 
direction, and likewise for Y in the vertical direction. The 
discrete transform sums over all available pixels and sets 
𝑓𝑓𝑓𝑓[𝜕𝜕𝜕𝜕,𝑦𝑦𝑦𝑦] = 0 outside the observed X by Y region. 
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nm) worth of epitaxial growth [11,12,19], while thin films with 
practical applications are often over 100 nanometers thick [20].  
 Here, we develop and test a facile classification scheme that 
quantifies how ordered thin film growth is using only 
topological data. This approach relies on transforming 
topographical atomic force microscopy (AFM) data into k-
space and comparing the result to the predicted Fourier 
transform of perfect thin film epitaxy, as well as measuring 
maintenance of periodicity over large regions of film. 
 The following notation will be used throughout the 
manuscript:  
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It is well known that using different substrates can result in 

the growth of different types of crystal grains. There are three 
main cases of thin film growth, reviewed extensively in [8] and 
[15].   

1. Epitaxial crystalline growth. In the case of epitaxial 
growth, the crystal grains align perfectly with the 
substrate’s crystal structure, and the edges of crystal 
grains also align with the substrate and thus align with 
each other. Topographical data of this type of growth 
presents as a perfect tessellation of crystal edges. The 

shape of the grains depends on the shape of the 
substrate’s exposed crystal plane.  

2. Non-epitaxial crystalline growth. In the case of non-
substrate directed crystalline growth, nucleation and 
growth occurs in random directions. Although crystals 
with hard edges can still form, they will not be aligned 
with each other. This can be modeled as an assortment 
of randomly oriented crystals, where the shape of the 
crystal depends mostly on the thin film material’s 
intrinsic crystalline properties.  

3. Random growth. In the case of non-epitaxial, non-
crystalline growth, the thin film grows haphazardly on 
an unordered substrate, forming unordered structures. 
This case is largely non-instructive, and has no 
consistent morphological ordering.  

In this experiment, holmium oxide was grown on two 
different crystal planes of sapphire, A-plane and C-plane, 
depicted in Fig. 2. The A-plane atomic cross section is a 
rectangular lattice, while the C-plane cross-section contains a 
hexagonal lattice. Meanwhile, holmium naturally grows into a 
hexagonal lattice [21] that is a close match in terms of lattice 
strain to C-cut sapphire, so it is expected that the C-plane 
sapphire will clearly direct its growth, whereas holmium will 
grow into randomly oriented triangular or hexagonal crystallites 
on  the A-plane sapphire. The amorphous quartz substrate is not 
crystalline, and thus cannot epitaxially direct growth. 

 

 
Fig. 2. Different sapphire crystal planes. C-plane sapphire is 
a hexagonally symmetric lattice, while A-plane sapphire is 
more rectangular.  

 
Since there should be one main set of periodic components 

in the first case, and many rotated sets of the same kind of 
triangle in the second case, the 2-dimensional Fourier transform 
(FT) offers a way to extract the magnitude of different periodic 
components and quantify underlying periodicity. The 2D FT is 
based on the same principles as a one-dimensional Fourier 
transform, using complex exponential functions of x and y as 
the basis set.  

Since we have discrete images of 512x512 datapoints, we 
have to use the DFT described in Equation (3) rather than the 
FT described in Equation (2), with 𝑋𝑋𝑋𝑋 = 𝑋𝑋𝑋𝑋 = 512. Note that this 
transform works theoretically because the AFM signal is 
viewed as a multiplication of the real thin film surface with the 
bed-of-nails function in Equation (4), which samples out 
262,144 discrete datapoints from the true, underlying, 
continuous thin film surface.   
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Implementing the FFT in MATLAB on a representative set 

of potential crystal patterns, it is apparent that the FFT of 
disordered triangles contains the superposition of many rotated 
transforms of individual triangles, ultimately creating a messy 
(and, ad infinitum, uniform and circularly symmetric) Fourier 
transform (Fig. 3a-b).  

 

 
Fig. 3. Theoretical Fourier domain images of ordered 
(epitaxial) vs disordered (non-epitaxial) triangles. (a), (c), (e), 
and (g) depict initial images, while (b), (d), (f), and (h) are their 
respective FFTs. In (a) and (b), the unordered triangles create 
a mess of overlapping, rotated hexagons. In (c) and (d), a 
uniform, perfectly ordered tessellation of identical equilateral 
triangles creates rhomboidal patterns out of discrete dots. In 
(e)-(h), tessellations of triangles of varying height and size both 
create hexagonal FT patterns. 
 

Meanwhile, any set of ordered or tessellated triangles results 
in six main lines originating from the zero-order center, rotated 
depending on the initial orientation of the triangles (Fig. 3c-h). 
The hexagonal symmetry emerging from a central node is most 
apparent when multicolored triangles are used (Fig. 3e-h). 
These multicolored images are more realistic representations of 
crystal grain growth, individual grains grow to varying sizes 
and thus are different heights in AFM micrographs.  

The hexagonal ordering and Fourier pattern appear to be 
independent of variations in amplitude (color) or size variations 
in the initial triangle tessellation, suggesting the Fourier 
transform may be an effective way to classify ordering in crystal 
growth. Now that it is clear that the different theoretical growth 
regimes of crystals should be distinguishable using the Fourier 
transform, the given holmium oxide AFM data can be 
transformed into k-space and qualitatively compared to the 
theoretical transforms in Fig. 3.  

III. QUALITATIVELY INVESTIGATING HOLMIUM OXIDE THIN 
FILM GROWTH 

Taking the 2-dimensional FFT of the holmium oxide thin 
film data yields k-space images that immediately reveal 
orientation differences between the films grown on A-plane 
sapphire, C-plane sapphire, and amorphous quartz. 

In particular, both films grown on sapphire substrates have 
considerable spread from the zero-order lines in the Fourier 

plane (Fig. 4a-d), while the film grown on quartz is clearly 
disordered optically and has no visible triangles (Fig 4e). The 
Fourier transform of the film grown on amorphous quartz is 
focused around the zero-order lines, suggesting more random 
growth (Fig. 4f).  

Note that in the initial AFM image, while it is clear to the eye 
that the crystallites are triangular on both A sapphire (Fig. 4a) 
and C sapphire (Fig. 4c), whether these triangles are aligned 
with each other is an open question. However, the slight 
qualitative differences in the Fourier domain suggest an answer. 
While the transform of the holmium oxide film grown on 
Sapphire A is largely circularly symmetric (Fig. 4b), suggesting 
some amount of sharp triangular edges but not ordered triangles 
(similar to the pattern in Fig. 3b), the transform of the holmium 
oxide film grown on C-plane sapphire has higher brightness 
along a hexagonal set of contours (Fig. 4d), akin to the 
theoretical transforms in Fig. 3f and 3h.  

 

 
Fig. 4. Holmium oxide thin films grown on three different 
substrates under identical run conditions and their respective 
FFTs. The thin film on sapphire A (a), which contains 
triangular crystallites, has no clear ordering in its FFT (b). 
However, the thin film on sapphire C (c), which also contains 
triangular crystallites, has hexagonal ordering in its FFT (d), 
suggesting crystallite alignment. To contrast, there is no clear 
ordering in either the AFM image (e) or FFT (f) of the film 
grown on amorphous quartz, only large zero-order patterns 
and symmetric spread.  
 
 While this qualitative comparison of Fourier transforms to 
the theoretical transforms of tessellations given in Fig. 3 
suggests a slight difference in epitaxial ordering between the 
Sapphire A- and Sapphire C-grown films, it is unclear if there 
is some fine degree of overall threefold ordering on Sapphire A 
(which would be possible if, for example, each triangular 
crystallite constrained the orientation of the neighboring 
crystallite; in other words, the holmium could self-direct its 
own growth.) Thus, quantifying the perceived difference 
between Fig. 4b and Fig. 4d is important for understanding how 
ordered the thin films are.  

IV. QUANTIFYING EPITAXIAL GROWTH 
At present, two tools are widely used quantify the influence of 
epitaxy on nanostructure and thin film growth.  

1. Direct measurements using TEM, as in [11] and [12]. 
This reveals the degree of lattice mismatch at the 
substrate-film interface and is thus the ideal tool for 
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transforms of individual triangles, ultimately creating a messy 
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Fig. 3. Theoretical Fourier domain images of ordered 
(epitaxial) vs disordered (non-epitaxial) triangles. (a), (c), (e), 
and (g) depict initial images, while (b), (d), (f), and (h) are their 
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triangles creates rhomboidal patterns out of discrete dots. In 
(e)-(h), tessellations of triangles of varying height and size both 
create hexagonal FT patterns. 
 

Meanwhile, any set of ordered or tessellated triangles results 
in six main lines originating from the zero-order center, rotated 
depending on the initial orientation of the triangles (Fig. 3c-h). 
The hexagonal symmetry emerging from a central node is most 
apparent when multicolored triangles are used (Fig. 3e-h). 
These multicolored images are more realistic representations of 
crystal grain growth, individual grains grow to varying sizes 
and thus are different heights in AFM micrographs.  

The hexagonal ordering and Fourier pattern appear to be 
independent of variations in amplitude (color) or size variations 
in the initial triangle tessellation, suggesting the Fourier 
transform may be an effective way to classify ordering in crystal 
growth. Now that it is clear that the different theoretical growth 
regimes of crystals should be distinguishable using the Fourier 
transform, the given holmium oxide AFM data can be 
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theoretical transforms in Fig. 3.  
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orientation differences between the films grown on A-plane 
sapphire, C-plane sapphire, and amorphous quartz. 
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disordered optically and has no visible triangles (Fig 4e). The 
Fourier transform of the film grown on amorphous quartz is 
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and C sapphire (Fig. 4c), whether these triangles are aligned 
with each other is an open question. However, the slight 
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some amount of sharp triangular edges but not ordered triangles 
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Fig. 4. Holmium oxide thin films grown on three different 
substrates under identical run conditions and their respective 
FFTs. The thin film on sapphire A (a), which contains 
triangular crystallites, has no clear ordering in its FFT (b). 
However, the thin film on sapphire C (c), which also contains 
triangular crystallites, has hexagonal ordering in its FFT (d), 
suggesting crystallite alignment. To contrast, there is no clear 
ordering in either the AFM image (e) or FFT (f) of the film 
grown on amorphous quartz, only large zero-order patterns 
and symmetric spread.  
 
 While this qualitative comparison of Fourier transforms to 
the theoretical transforms of tessellations given in Fig. 3 
suggests a slight difference in epitaxial ordering between the 
Sapphire A- and Sapphire C-grown films, it is unclear if there 
is some fine degree of overall threefold ordering on Sapphire A 
(which would be possible if, for example, each triangular 
crystallite constrained the orientation of the neighboring 
crystallite; in other words, the holmium could self-direct its 
own growth.) Thus, quantifying the perceived difference 
between Fig. 4b and Fig. 4d is important for understanding how 
ordered the thin films are.  

IV. QUANTIFYING EPITAXIAL GROWTH 
At present, two tools are widely used quantify the influence of 
epitaxy on nanostructure and thin film growth.  

1. Direct measurements using TEM, as in [11] and [12]. 
This reveals the degree of lattice mismatch at the 
substrate-film interface and is thus the ideal tool for 

NANOscientific20

superposition of many rotated transforms 
of individual triangles, ultimately creating 
a messy (and, ad infinitum, uniform and 
circularly symmetric) Fourier transform 
(Fig. 3a-b). 

Meanwhile, any set of ordered or 
tessellated triangles results in six main 
lines originating from the zero-order 
center, rotated depending on the initial 
orientation of the triangles (Fig. 3c-h). 
The hexagonal symmetry emerging from 
a central node is most apparent when 
multicolored triangles are used (Fig. 3e-
h). These multicolored images are more 
realistic representations of crystal grain 
growth, individual grains grow to varying 
sizes and thus are different heights in AFM 
micrographs. 

The hexagonal ordering and Fourier 
pattern appear to be independent of 
variations in amplitude (color) or size 
variations in the initial triangle tessellation, 
suggesting the Fourier transform may be 
an effective way to classify ordering in 
crystal growth. Now that it is clear that the 
different theoretical growth regimes of 
crystals should be distinguishable using 
the Fourier transform, the given holmium 
oxide AFM data can be transformed into 
k-space and qualitatively compared to the 
theoretical transforms in Fig. 3. 

QUALITATIVELY INVESTIGATING 
HOLMIUM OXIDE THIN FILM GROWTH

Taking the 2-dimensional FFT of the 
holmium oxide thin film data yields 
k-space images that immediately reveal 
orientation differences between the films 
grown on A-plane sapphire, C-plane 

sapphire, and amorphous quartz.

In particular, both films grown on sapphire 
substrates have considerable spread from 
the zero-order lines in the Fourier plane 
(Fig. 4a-d), while the film grown on quartz 
is clearly disordered optically and has 
no visible triangles (Fig 4e). The Fourier 
transform of the film grown on amorphous 
quartz is focused around the zero-order 
lines, suggesting more random growth 
(Fig. 4f). 

Note that in the initial AFM image, while 
it is clear to the eye that the crystallites 
are triangular on both A sapphire (Fig. 4a) 
and C sapphire (Fig. 4c), whether these 
triangles are aligned with each other is 
an open question. However, the slight 
qualitative differences in the Fourier 
domain suggest an answer. While the 
transform of the holmium oxide film 
grown on Sapphire A is largely circularly 
symmetric (Fig. 4b), suggesting some 
amount of sharp triangular edges but not 
ordered triangles (similar to the pattern 
in Fig. 3b), the transform of the holmium 
oxide film grown on C-plane sapphire has 
higher brightness along a hexagonal set of 
contours (Fig. 4d), akin to the theoretical 
transforms in Fig. 3f and 3h. 

While this qualitative comparison of 
Fourier transforms to the theoretical 
transforms of tessellations given in Fig. 
3 suggests a slight difference in epitaxial 
ordering between the Sapphire A- and 
Sapphire C-grown films, it is unclear 
if there is some fine degree of overall 
threefold ordering on Sapphire A (which 
would be possible if, for example, each 
triangular crystallite constrained the 

orientation of the neighboring crystallite; 
in other words, the holmium could self-
direct its own growth.) Thus, quantifying 
the perceived difference between Fig. 4b 
and Fig. 4d is important for understanding 
how ordered the thin films are. 

QUANTIFYING EPITAXIAL GROWTH

At present, two tools are widely used 
quantify the influence of epitaxy on 
nanostructure and thin film growth. 

Direct measurements using TEM, as in 
[11] and [12]. This reveals the degree of 
lattice mismatch at the substrate-film 
interface and is thus the ideal tool for 
quantifying epitaxial growth. However, 
this tool is ineffective when the resulting 
thin film does not perfectly match up with 
the sapphire crystal lines (as with the 
holmium oxide), and when the size regime 
of interest extends beyond a couple 
nanometers (in our case, the relevant regime 
is hundreds of nanometers; see Fig. 1). 

Theoretical lattice mismatch [22]. Every 
material has a known crystal structure, 
and the difference between lattices (i.e. the 
size of a holmium hexagon vs a sapphire 
hexagon) can be computed. Lattice strain 
s is determined by the crystal spacing of 
the substrate a_sub and intrinsic crystal 
spacing of the film material a_epi in 
Equation (5). Typically, a lattice strain of 
below 10% (s=0.1) suggests epitaxial thin 
film growth. 

Fig. 3. Theoretical Fourier domain images of ordered (epitaxial) vs disordered 
(non-epitaxial) triangles. (a), (c), (e), and (g) depict initial images, while (b), (d), (f), 
and (h) are their respective FFTs. In (a) and (b), the unordered triangles create a 
mess of overlapping, rotated hexagons. In (c) and (d), a uniform, perfectly ordered 
tessellation of identical equilateral triangles creates rhomboidal patterns out of 
discrete dots. In (e)-(h), tessellations of triangles of varying height and size both 
create hexagonal FT patterns.

Fig. 4. Holmium oxide thin films grown on three different substrates under identical 
run conditions and their respective FFTs. The thin film on sapphire A (a), which 
contains triangular crystallites, has no clear ordering in its FFT (b). However, 
the thin film on sapphire C (c), which also contains triangular crystallites, has 
hexagonal ordering in its FFT (d), suggesting crystallite alignment. To contrast, 
there is no clear ordering in either the AFM image (e) or FFT (f) of the film grown on 
amorphous quartz, only large zero-order patterns and symmetric spread. 
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quantifying epitaxial growth. However, this tool is 
ineffective when the resulting thin film does not 
perfectly match up with the sapphire crystal lines (as 
with the holmium oxide), and when the size regime of 
interest extends beyond a couple nanometers (in our 
case, the relevant regime is hundreds of nanometers; 
see Fig. 1).  

2. Theoretical lattice mismatch [22]. Every material has 
a known crystal structure, and the difference between 
lattices (i.e. the size of a holmium hexagon vs a 
sapphire hexagon) can be computed. Lattice strain 𝑠𝑠𝑠𝑠 is 
determined by the crystal spacing of the substrate 𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑥𝑥𝑥𝑥𝑠𝑠𝑠𝑠 
and intrinsic crystal spacing of the film material 𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  
in Equation (5). Typically, a lattice strain of below 
10% (𝑠𝑠𝑠𝑠 = 0.1) suggests epitaxial thin film growth.  
 

𝑠𝑠𝑠𝑠 =
𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑥𝑥𝑥𝑥𝑠𝑠𝑠𝑠 − 𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑥𝑥𝑥𝑥𝑠𝑠𝑠𝑠
(5) 

 
However, this technique is not a true “measurement” 
of ordering, but rather a convenient percentage that 
can be reported along with qualitative images of 
clearly ordered growth (i.e. aligned nanowires). 
Lattice mismatch does not always determine epitaxial 
growth and vice versa [23]. For example, the lattice 
strain between holmium oxide and sapphire C is 𝑠𝑠𝑠𝑠 =
 0.25 > 0.1, but it is clear by inspection that choice of 
substrate influences growth (Fig. 4a,c,e).  

 As a result, development of a quantification scheme beyond 
lattice strain that can utilize easy-to-collect topographical data 
(i.e. from AFM, SEM) is paramount to understanding partial 
ordering and ordering on large scales.  
 Once again, tools from signal processing come into play. 
Rather than qualitatively comparing the FFT of an ordered 
lattice of triangles with that of AFM images, we can 
quantitatively compare the two using an inner product. 
 First, we choose a quantifier, an ideal image and 
corresponding FFT to model the epitaxy that we would like to 
measure a given thin film’s similarity to. Note that the choice 
of quantifier will define our result, so future work must be 
careful when comparing different results to make sure the same 
choice of quantifier image was used.  

To measure the similarity of a given image with the 
quantifier, we could simply take a Frobenius inner product 
(Equation (6)) of the matrix 𝑄𝑄𝑄𝑄 representing the FFT of the 
quantifier and 𝐴𝐴𝐴𝐴 representing the FFT of the image. If the 
hexagonal patterns align, this will be larger than if none of the 
patterns align. 

 
< 𝐴𝐴𝐴𝐴,𝑄𝑄𝑄𝑄 > = �𝐴𝐴𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒∗ 𝑄𝑄𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝑒𝑒𝑒𝑒,𝑒𝑒𝑒𝑒

(6) 

 
However, in order for this computation to work, the FFTs must 
be pre-processed first. Otherwise, images that are very bright 
will automatically have a very large inner product, or triangles 
that are not exactly aligned with those of the quantifier image 
may have a low inner product despite perfect alignment 
between triangles in the AFM image. The quantifier algorithm 
is as follows:  

1. Load the images and take their FFTs.  
2. Remove uniform background noise. 
3. Remove outliers above an experimentally determined 

high quantile. In the future, an LPF could be used.  
4. Normalize each FFT F by dividing by its Frobenius 

norm, √< 𝐹𝐹𝐹𝐹,𝐹𝐹𝐹𝐹 >, where the inner product is given in 
(6).   

5. Compute what we here define as the q-score, defined 
as the inner product of the processed FFTs 𝐴𝐴𝐴𝐴′,𝑄𝑄𝑄𝑄′: 
 

𝑞𝑞𝑞𝑞 = < 𝐴𝐴𝐴𝐴′,𝑄𝑄𝑄𝑄′ > (7) 
 

6. In addition, compute the error, defined below. Note 
that low q-scores are correlated with high errors.  

 
𝜖𝜖𝜖𝜖 =  ��𝐴𝐴𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 − 𝑄𝑄𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒�
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𝑒𝑒𝑒𝑒,𝑒𝑒𝑒𝑒

(8) 

 
There is one further challenge: rotating an image will also rotate 
the FT of that image. For instance, rotation of the quantifier 
triangle tessellation image by 10 degrees will also rotate its 
Fourier transform by 10 degrees. The proof is below:  
 
Working in polar coordinates, set 𝜕𝜕𝜕𝜕 = 𝑟𝑟𝑟𝑟 cos 𝜃𝜃𝜃𝜃, 𝑦𝑦𝑦𝑦 = 𝑟𝑟𝑟𝑟 sin𝜃𝜃𝜃𝜃,𝑢𝑢𝑢𝑢 =
𝜌𝜌𝜌𝜌 cos𝜙𝜙𝜙𝜙, 𝑣𝑣𝑣𝑣 = 𝜌𝜌𝜌𝜌 sin𝜙𝜙𝜙𝜙. Plugging this into Eq. 2, we see 𝐹𝐹𝐹𝐹(𝜌𝜌𝜌𝜌,𝜙𝜙𝜙𝜙)  

= � � 𝑓𝑓𝑓𝑓(𝑟𝑟𝑟𝑟,𝜃𝜃𝜃𝜃)𝑒𝑒𝑒𝑒−𝑒𝑒𝑒𝑒2𝜋𝜋𝜋𝜋(𝑟𝑟𝑟𝑟 cos 𝜃𝜃𝜃𝜃 𝜌𝜌𝜌𝜌 cos𝜙𝜙𝜙𝜙+𝑟𝑟𝑟𝑟 sin 𝜃𝜃𝜃𝜃 𝜌𝜌𝜌𝜌 sin𝜙𝜙𝜙𝜙)
2𝜋𝜋𝜋𝜋

0
𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝜃𝜃𝜃𝜃 

∞

0
 

= � � 𝑓𝑓𝑓𝑓(𝑟𝑟𝑟𝑟, 𝜃𝜃𝜃𝜃)𝑒𝑒𝑒𝑒−𝑒𝑒𝑒𝑒2𝜋𝜋𝜋𝜋𝑟𝑟𝑟𝑟𝜌𝜌𝜌𝜌 cos(𝜃𝜃𝜃𝜃−𝜙𝜙𝜙𝜙)
2𝜋𝜋𝜋𝜋

0
𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝜃𝜃𝜃𝜃

∞

0
 

By inspection, a rotation in real space results in the same 
rotation in k-space, i.e.  

𝑓𝑓𝑓𝑓(𝑟𝑟𝑟𝑟,𝜃𝜃𝜃𝜃 + 𝜃𝜃𝜃𝜃0) ↔ 𝐹𝐹𝐹𝐹(𝜌𝜌𝜌𝜌,𝜙𝜙𝜙𝜙 + 𝜃𝜃𝜃𝜃0) (9) 
 
In order to avoid accidental mismatch between potential perfect 
tessellations of the substrate and quantifier (i.e. the substrate 
hexagonal pattern could, by chance, be rotated 30 degrees away 
from the quantifier FFT hexagonal pattern), we will rotate the 
quantifier by small increments, going through the above 
algorithm and computing the q-score and error for each 
rotation. We can perform this rotation in real space and then 
take the Fourier transform, as rotating in either basis is 
equivalent by (9). Then, we select the highest q-score (i.e. the 
best match) and set that as the true q-score, along with its 
concurrent error. Note that for a 6-fold symmetric image such 
as a tessellation of triangles, we only have to rotate through a 
total of 60 degrees before the original pattern returns, 
decreasing computational time. In addition, the amount of each 
rotation can be tuned according to computational demands. 
 A quick internal calibration of the quantification algorithm is 
that it should return 1 if 𝑄𝑄𝑄𝑄 = 𝐴𝐴𝐴𝐴; this is indeed the case.  
 Next, we test this algorithm on our images, depicted in Figure 
5. The different quantifiers used are the mono-color image (Fig. 
1c), multi-color, -size image (Fig. 1g), and multicolor image 
(Fig. 1e). Recall that a high q-score is indicative of high 
matching with the ideal pattern, and subsequent high ordering.  
While the particular q-scores change depending on the choice 
of quantifier, the ordering remains the same: sapphire C is the 

 4 

quantifying epitaxial growth. However, this tool is 
ineffective when the resulting thin film does not 
perfectly match up with the sapphire crystal lines (as 
with the holmium oxide), and when the size regime of 
interest extends beyond a couple nanometers (in our 
case, the relevant regime is hundreds of nanometers; 
see Fig. 1).  

2. Theoretical lattice mismatch [22]. Every material has 
a known crystal structure, and the difference between 
lattices (i.e. the size of a holmium hexagon vs a 
sapphire hexagon) can be computed. Lattice strain 𝑠𝑠𝑠𝑠 is 
determined by the crystal spacing of the substrate 𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑥𝑥𝑥𝑥𝑠𝑠𝑠𝑠 
and intrinsic crystal spacing of the film material 𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  
in Equation (5). Typically, a lattice strain of below 
10% (𝑠𝑠𝑠𝑠 = 0.1) suggests epitaxial thin film growth.  
 

𝑠𝑠𝑠𝑠 =
𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑥𝑥𝑥𝑥𝑠𝑠𝑠𝑠 − 𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑥𝑥𝑥𝑥𝑠𝑠𝑠𝑠
(5) 

 
However, this technique is not a true “measurement” 
of ordering, but rather a convenient percentage that 
can be reported along with qualitative images of 
clearly ordered growth (i.e. aligned nanowires). 
Lattice mismatch does not always determine epitaxial 
growth and vice versa [23]. For example, the lattice 
strain between holmium oxide and sapphire C is 𝑠𝑠𝑠𝑠 =
 0.25 > 0.1, but it is clear by inspection that choice of 
substrate influences growth (Fig. 4a,c,e).  

 As a result, development of a quantification scheme beyond 
lattice strain that can utilize easy-to-collect topographical data 
(i.e. from AFM, SEM) is paramount to understanding partial 
ordering and ordering on large scales.  
 Once again, tools from signal processing come into play. 
Rather than qualitatively comparing the FFT of an ordered 
lattice of triangles with that of AFM images, we can 
quantitatively compare the two using an inner product. 
 First, we choose a quantifier, an ideal image and 
corresponding FFT to model the epitaxy that we would like to 
measure a given thin film’s similarity to. Note that the choice 
of quantifier will define our result, so future work must be 
careful when comparing different results to make sure the same 
choice of quantifier image was used.  

To measure the similarity of a given image with the 
quantifier, we could simply take a Frobenius inner product 
(Equation (6)) of the matrix 𝑄𝑄𝑄𝑄 representing the FFT of the 
quantifier and 𝐴𝐴𝐴𝐴 representing the FFT of the image. If the 
hexagonal patterns align, this will be larger than if none of the 
patterns align. 

 
< 𝐴𝐴𝐴𝐴,𝑄𝑄𝑄𝑄 > = �𝐴𝐴𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒∗ 𝑄𝑄𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝑒𝑒𝑒𝑒,𝑒𝑒𝑒𝑒

(6) 

 
However, in order for this computation to work, the FFTs must 
be pre-processed first. Otherwise, images that are very bright 
will automatically have a very large inner product, or triangles 
that are not exactly aligned with those of the quantifier image 
may have a low inner product despite perfect alignment 
between triangles in the AFM image. The quantifier algorithm 
is as follows:  

1. Load the images and take their FFTs.  
2. Remove uniform background noise. 
3. Remove outliers above an experimentally determined 

high quantile. In the future, an LPF could be used.  
4. Normalize each FFT F by dividing by its Frobenius 

norm, √< 𝐹𝐹𝐹𝐹,𝐹𝐹𝐹𝐹 >, where the inner product is given in 
(6).   

5. Compute what we here define as the q-score, defined 
as the inner product of the processed FFTs 𝐴𝐴𝐴𝐴′,𝑄𝑄𝑄𝑄′: 
 

𝑞𝑞𝑞𝑞 = < 𝐴𝐴𝐴𝐴′,𝑄𝑄𝑄𝑄′ > (7) 
 

6. In addition, compute the error, defined below. Note 
that low q-scores are correlated with high errors.  

 
𝜖𝜖𝜖𝜖 =  ��𝐴𝐴𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 − 𝑄𝑄𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒�
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𝑒𝑒𝑒𝑒,𝑒𝑒𝑒𝑒

(8) 

 
There is one further challenge: rotating an image will also rotate 
the FT of that image. For instance, rotation of the quantifier 
triangle tessellation image by 10 degrees will also rotate its 
Fourier transform by 10 degrees. The proof is below:  
 
Working in polar coordinates, set 𝜕𝜕𝜕𝜕 = 𝑟𝑟𝑟𝑟 cos 𝜃𝜃𝜃𝜃, 𝑦𝑦𝑦𝑦 = 𝑟𝑟𝑟𝑟 sin𝜃𝜃𝜃𝜃,𝑢𝑢𝑢𝑢 =
𝜌𝜌𝜌𝜌 cos𝜙𝜙𝜙𝜙, 𝑣𝑣𝑣𝑣 = 𝜌𝜌𝜌𝜌 sin𝜙𝜙𝜙𝜙. Plugging this into Eq. 2, we see 𝐹𝐹𝐹𝐹(𝜌𝜌𝜌𝜌,𝜙𝜙𝜙𝜙)  

= � � 𝑓𝑓𝑓𝑓(𝑟𝑟𝑟𝑟,𝜃𝜃𝜃𝜃)𝑒𝑒𝑒𝑒−𝑒𝑒𝑒𝑒2𝜋𝜋𝜋𝜋(𝑟𝑟𝑟𝑟 cos 𝜃𝜃𝜃𝜃 𝜌𝜌𝜌𝜌 cos𝜙𝜙𝜙𝜙+𝑟𝑟𝑟𝑟 sin 𝜃𝜃𝜃𝜃 𝜌𝜌𝜌𝜌 sin𝜙𝜙𝜙𝜙)
2𝜋𝜋𝜋𝜋

0
𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝜃𝜃𝜃𝜃 

∞

0
 

= � � 𝑓𝑓𝑓𝑓(𝑟𝑟𝑟𝑟, 𝜃𝜃𝜃𝜃)𝑒𝑒𝑒𝑒−𝑒𝑒𝑒𝑒2𝜋𝜋𝜋𝜋𝑟𝑟𝑟𝑟𝜌𝜌𝜌𝜌 cos(𝜃𝜃𝜃𝜃−𝜙𝜙𝜙𝜙)
2𝜋𝜋𝜋𝜋

0
𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝜃𝜃𝜃𝜃

∞

0
 

By inspection, a rotation in real space results in the same 
rotation in k-space, i.e.  

𝑓𝑓𝑓𝑓(𝑟𝑟𝑟𝑟,𝜃𝜃𝜃𝜃 + 𝜃𝜃𝜃𝜃0) ↔ 𝐹𝐹𝐹𝐹(𝜌𝜌𝜌𝜌,𝜙𝜙𝜙𝜙 + 𝜃𝜃𝜃𝜃0) (9) 
 
In order to avoid accidental mismatch between potential perfect 
tessellations of the substrate and quantifier (i.e. the substrate 
hexagonal pattern could, by chance, be rotated 30 degrees away 
from the quantifier FFT hexagonal pattern), we will rotate the 
quantifier by small increments, going through the above 
algorithm and computing the q-score and error for each 
rotation. We can perform this rotation in real space and then 
take the Fourier transform, as rotating in either basis is 
equivalent by (9). Then, we select the highest q-score (i.e. the 
best match) and set that as the true q-score, along with its 
concurrent error. Note that for a 6-fold symmetric image such 
as a tessellation of triangles, we only have to rotate through a 
total of 60 degrees before the original pattern returns, 
decreasing computational time. In addition, the amount of each 
rotation can be tuned according to computational demands. 
 A quick internal calibration of the quantification algorithm is 
that it should return 1 if 𝑄𝑄𝑄𝑄 = 𝐴𝐴𝐴𝐴; this is indeed the case.  
 Next, we test this algorithm on our images, depicted in Figure 
5. The different quantifiers used are the mono-color image (Fig. 
1c), multi-color, -size image (Fig. 1g), and multicolor image 
(Fig. 1e). Recall that a high q-score is indicative of high 
matching with the ideal pattern, and subsequent high ordering.  
While the particular q-scores change depending on the choice 
of quantifier, the ordering remains the same: sapphire C is the 
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However, this technique is not a true 
“measurement” of ordering, but rather 
a convenient percentage that can be 
reported along with qualitative images 
of clearly ordered growth (i.e. aligned 
nanowires). Lattice mismatch does not 
always determine epitaxial growth and 
vice versa [23]. For example, the lattice 
strain between holmium oxide and 
sapphire C is s= 0.25>0.1, but it is clear 
by inspection that choice of substrate 
influences growth (Fig. 4a,c,e). 

As a result, development of a 
quantification scheme beyond lattice 
strain that can utilize easy-to-collect 
topographical data (i.e. from AFM, SEM) 
is paramount to understanding partial 
ordering and ordering on large scales. 

Once again, tools from signal 
processing come into play. Rather than 
qualitatively comparing the FFT of an 
ordered lattice of triangles with that 
of AFM images, we can quantitatively 
compare the two using an inner 
product.

First, we choose a quantifier, an ideal 
image and corresponding FFT to 
model the epitaxy that we would like to 
measure a given thin film’s similarity to. 
Note that the choice of quantifier will 
define our result, so future work must 
be careful when comparing different 
results to make sure the same choice of 
quantifier image was used. 

To measure the similarity of a 
given image with the quantifier, we 
could simply take a Frobenius inner 
product (Equation (6)) of the matrix Q 
representing the FFT of the quantifier 
and A representing the FFT of the 
image. If the hexagonal patterns align, 
this will be larger than if none of the 
patterns align.

However, in order for this computation 
to work, the FFTs must be pre-
processed first. Otherwise, images that 
are very bright will automatically have 
a very large inner product, or triangles 
that are not exactly aligned with those 
of the quantifier image may have a 
low inner product despite perfect 
alignment between triangles in the AFM 
image. 

The quantifier algorithm is as follows: 

1. Load the images and take their FFTs. 

2. Remove uniform background noise.

3. Remove outliers above an 
experimentally determined high 
quantile. In the future, an LPF could 
be used. 

4. Normalize each FFT F by dividing by 
its Frobenius norm, √(<F,F>), where 
the inner product is given in (6).  

5. Compute what we here define as the 
q-score, defined as the inner product 
of the processed FFTs A^',Q':

6. In addition, compute the error, 
defined below. Note that low 
q-scores are correlated with high 
errors. 

There is one further challenge: rotating 
an image will also rotate the FT of that 
image. For instance, rotation of the 
quantifier triangle tessellation image 
by 10 degrees will also rotate its Fourier 
transform by 10 degrees. The proof is 
below: 

Working in polar coordinates, set x=r cos 
θ, y=r sinθ,u=ρ cos ϕ, v=ρ sinϕ. Plugging 
this into Eq. 2, we see F(ρ,ϕ)  

By inspection, a rotation in real space 
results in the same rotation in k-space, i.e. 

In order to avoid accidental mismatch 
between potential perfect tessellations 
of the substrate and quantifier (i.e. the 
substrate hexagonal pattern could, by 
chance, be rotated 30 degrees away from 
the quantifier FFT hexagonal pattern), 
we will rotate the quantifier by small 
increments, going through the above 
algorithm and computing the q-score and 
error for each rotation. We can perform 

this rotation in real space and then take 
the Fourier transform, as rotating in 
either basis is equivalent by (9). Then, we 
select the highest q-score (i.e. the best 
match) and set that as the true q-score, 
along with its concurrent error. Note that 
for a 6-fold symmetric image such as a 
tessellation of triangles, we only have to 
rotate through a total of 60 degrees before 
the original pattern returns, decreasing 
computational time. In addition, the 
amount of each rotation can be tuned 
according to computational demands.

A quick internal calibration of the 
quantification algorithm is that it should 
return 1 if Q=A; this is indeed the case. 

Next, we test this algorithm on our 
images, depicted in Figure 5. The different 
quantifiers used are the mono-color 
image (Fig. 1c), multi-color, -size image 
(Fig. 1g), and multicolor image (Fig. 1e). 
Recall that a high q-score is indicative 
of high matching with the ideal pattern, 
and subsequent high ordering.  While the 
particular q-scores change depending 
on the choice of quantifier, the ordering 
remains the same: sapphire C is the 
most ordered, followed by sapphire A. 
Amorphous quartz is the least ordered. 

In addition, note that the multicolor, 
multi-size triangle tessellation quantifier 
offers the greatest distinguishability. This 
is expected, given that it is most similar 
to the AFM pattern that would actually be 
observed in the case of epitaxial growth: 
crystallites are all oriented, but can vary 
in height and lateral size, represented by 
variations in color and size respectively. 

Fig. 7. Computed error of matching for long-range 
ordering. Sapphire A has much higher error, 
suggesting less order and less epitaxy. 

One additional use of this quantification 
scheme lies in comparing images to 
one another. For example, one other 
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quantifying epitaxial growth. However, this tool is 
ineffective when the resulting thin film does not 
perfectly match up with the sapphire crystal lines (as 
with the holmium oxide), and when the size regime of 
interest extends beyond a couple nanometers (in our 
case, the relevant regime is hundreds of nanometers; 
see Fig. 1).  

2. Theoretical lattice mismatch [22]. Every material has 
a known crystal structure, and the difference between 
lattices (i.e. the size of a holmium hexagon vs a 
sapphire hexagon) can be computed. Lattice strain 𝑠𝑠𝑠𝑠 is 
determined by the crystal spacing of the substrate 𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑥𝑥𝑥𝑥𝑠𝑠𝑠𝑠 
and intrinsic crystal spacing of the film material 𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  
in Equation (5). Typically, a lattice strain of below 
10% (𝑠𝑠𝑠𝑠 = 0.1) suggests epitaxial thin film growth.  
 

𝑠𝑠𝑠𝑠 =
𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑥𝑥𝑥𝑥𝑠𝑠𝑠𝑠 − 𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑥𝑥𝑥𝑥𝑠𝑠𝑠𝑠
(5) 

 
However, this technique is not a true “measurement” 
of ordering, but rather a convenient percentage that 
can be reported along with qualitative images of 
clearly ordered growth (i.e. aligned nanowires). 
Lattice mismatch does not always determine epitaxial 
growth and vice versa [23]. For example, the lattice 
strain between holmium oxide and sapphire C is 𝑠𝑠𝑠𝑠 =
 0.25 > 0.1, but it is clear by inspection that choice of 
substrate influences growth (Fig. 4a,c,e).  

 As a result, development of a quantification scheme beyond 
lattice strain that can utilize easy-to-collect topographical data 
(i.e. from AFM, SEM) is paramount to understanding partial 
ordering and ordering on large scales.  
 Once again, tools from signal processing come into play. 
Rather than qualitatively comparing the FFT of an ordered 
lattice of triangles with that of AFM images, we can 
quantitatively compare the two using an inner product. 
 First, we choose a quantifier, an ideal image and 
corresponding FFT to model the epitaxy that we would like to 
measure a given thin film’s similarity to. Note that the choice 
of quantifier will define our result, so future work must be 
careful when comparing different results to make sure the same 
choice of quantifier image was used.  

To measure the similarity of a given image with the 
quantifier, we could simply take a Frobenius inner product 
(Equation (6)) of the matrix 𝑄𝑄𝑄𝑄 representing the FFT of the 
quantifier and 𝐴𝐴𝐴𝐴 representing the FFT of the image. If the 
hexagonal patterns align, this will be larger than if none of the 
patterns align. 

 
< 𝐴𝐴𝐴𝐴,𝑄𝑄𝑄𝑄 > = �𝐴𝐴𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒∗ 𝑄𝑄𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝑒𝑒𝑒𝑒,𝑒𝑒𝑒𝑒

(6) 

 
However, in order for this computation to work, the FFTs must 
be pre-processed first. Otherwise, images that are very bright 
will automatically have a very large inner product, or triangles 
that are not exactly aligned with those of the quantifier image 
may have a low inner product despite perfect alignment 
between triangles in the AFM image. The quantifier algorithm 
is as follows:  

1. Load the images and take their FFTs.  
2. Remove uniform background noise. 
3. Remove outliers above an experimentally determined 

high quantile. In the future, an LPF could be used.  
4. Normalize each FFT F by dividing by its Frobenius 

norm, √< 𝐹𝐹𝐹𝐹,𝐹𝐹𝐹𝐹 >, where the inner product is given in 
(6).   

5. Compute what we here define as the q-score, defined 
as the inner product of the processed FFTs 𝐴𝐴𝐴𝐴′,𝑄𝑄𝑄𝑄′: 
 

𝑞𝑞𝑞𝑞 = < 𝐴𝐴𝐴𝐴′,𝑄𝑄𝑄𝑄′ > (7) 
 

6. In addition, compute the error, defined below. Note 
that low q-scores are correlated with high errors.  
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There is one further challenge: rotating an image will also rotate 
the FT of that image. For instance, rotation of the quantifier 
triangle tessellation image by 10 degrees will also rotate its 
Fourier transform by 10 degrees. The proof is below:  
 
Working in polar coordinates, set 𝜕𝜕𝜕𝜕 = 𝑟𝑟𝑟𝑟 cos 𝜃𝜃𝜃𝜃, 𝑦𝑦𝑦𝑦 = 𝑟𝑟𝑟𝑟 sin𝜃𝜃𝜃𝜃,𝑢𝑢𝑢𝑢 =
𝜌𝜌𝜌𝜌 cos𝜙𝜙𝜙𝜙, 𝑣𝑣𝑣𝑣 = 𝜌𝜌𝜌𝜌 sin𝜙𝜙𝜙𝜙. Plugging this into Eq. 2, we see 𝐹𝐹𝐹𝐹(𝜌𝜌𝜌𝜌,𝜙𝜙𝜙𝜙)  

= � � 𝑓𝑓𝑓𝑓(𝑟𝑟𝑟𝑟,𝜃𝜃𝜃𝜃)𝑒𝑒𝑒𝑒−𝑒𝑒𝑒𝑒2𝜋𝜋𝜋𝜋(𝑟𝑟𝑟𝑟 cos 𝜃𝜃𝜃𝜃 𝜌𝜌𝜌𝜌 cos𝜙𝜙𝜙𝜙+𝑟𝑟𝑟𝑟 sin 𝜃𝜃𝜃𝜃 𝜌𝜌𝜌𝜌 sin𝜙𝜙𝜙𝜙)
2𝜋𝜋𝜋𝜋

0
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= � � 𝑓𝑓𝑓𝑓(𝑟𝑟𝑟𝑟, 𝜃𝜃𝜃𝜃)𝑒𝑒𝑒𝑒−𝑒𝑒𝑒𝑒2𝜋𝜋𝜋𝜋𝑟𝑟𝑟𝑟𝜌𝜌𝜌𝜌 cos(𝜃𝜃𝜃𝜃−𝜙𝜙𝜙𝜙)
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0
𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝜃𝜃𝜃𝜃
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By inspection, a rotation in real space results in the same 
rotation in k-space, i.e.  

𝑓𝑓𝑓𝑓(𝑟𝑟𝑟𝑟,𝜃𝜃𝜃𝜃 + 𝜃𝜃𝜃𝜃0) ↔ 𝐹𝐹𝐹𝐹(𝜌𝜌𝜌𝜌,𝜙𝜙𝜙𝜙 + 𝜃𝜃𝜃𝜃0) (9) 
 
In order to avoid accidental mismatch between potential perfect 
tessellations of the substrate and quantifier (i.e. the substrate 
hexagonal pattern could, by chance, be rotated 30 degrees away 
from the quantifier FFT hexagonal pattern), we will rotate the 
quantifier by small increments, going through the above 
algorithm and computing the q-score and error for each 
rotation. We can perform this rotation in real space and then 
take the Fourier transform, as rotating in either basis is 
equivalent by (9). Then, we select the highest q-score (i.e. the 
best match) and set that as the true q-score, along with its 
concurrent error. Note that for a 6-fold symmetric image such 
as a tessellation of triangles, we only have to rotate through a 
total of 60 degrees before the original pattern returns, 
decreasing computational time. In addition, the amount of each 
rotation can be tuned according to computational demands. 
 A quick internal calibration of the quantification algorithm is 
that it should return 1 if 𝑄𝑄𝑄𝑄 = 𝐴𝐴𝐴𝐴; this is indeed the case.  
 Next, we test this algorithm on our images, depicted in Figure 
5. The different quantifiers used are the mono-color image (Fig. 
1c), multi-color, -size image (Fig. 1g), and multicolor image 
(Fig. 1e). Recall that a high q-score is indicative of high 
matching with the ideal pattern, and subsequent high ordering.  
While the particular q-scores change depending on the choice 
of quantifier, the ordering remains the same: sapphire C is the 
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quantifying epitaxial growth. However, this tool is 
ineffective when the resulting thin film does not 
perfectly match up with the sapphire crystal lines (as 
with the holmium oxide), and when the size regime of 
interest extends beyond a couple nanometers (in our 
case, the relevant regime is hundreds of nanometers; 
see Fig. 1).  

2. Theoretical lattice mismatch [22]. Every material has 
a known crystal structure, and the difference between 
lattices (i.e. the size of a holmium hexagon vs a 
sapphire hexagon) can be computed. Lattice strain 𝑠𝑠𝑠𝑠 is 
determined by the crystal spacing of the substrate 𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑥𝑥𝑥𝑥𝑠𝑠𝑠𝑠 
and intrinsic crystal spacing of the film material 𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  
in Equation (5). Typically, a lattice strain of below 
10% (𝑠𝑠𝑠𝑠 = 0.1) suggests epitaxial thin film growth.  
 

𝑠𝑠𝑠𝑠 =
𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑥𝑥𝑥𝑥𝑠𝑠𝑠𝑠 − 𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑥𝑥𝑥𝑥𝑠𝑠𝑠𝑠
(5) 

 
However, this technique is not a true “measurement” 
of ordering, but rather a convenient percentage that 
can be reported along with qualitative images of 
clearly ordered growth (i.e. aligned nanowires). 
Lattice mismatch does not always determine epitaxial 
growth and vice versa [23]. For example, the lattice 
strain between holmium oxide and sapphire C is 𝑠𝑠𝑠𝑠 =
 0.25 > 0.1, but it is clear by inspection that choice of 
substrate influences growth (Fig. 4a,c,e).  

 As a result, development of a quantification scheme beyond 
lattice strain that can utilize easy-to-collect topographical data 
(i.e. from AFM, SEM) is paramount to understanding partial 
ordering and ordering on large scales.  
 Once again, tools from signal processing come into play. 
Rather than qualitatively comparing the FFT of an ordered 
lattice of triangles with that of AFM images, we can 
quantitatively compare the two using an inner product. 
 First, we choose a quantifier, an ideal image and 
corresponding FFT to model the epitaxy that we would like to 
measure a given thin film’s similarity to. Note that the choice 
of quantifier will define our result, so future work must be 
careful when comparing different results to make sure the same 
choice of quantifier image was used.  

To measure the similarity of a given image with the 
quantifier, we could simply take a Frobenius inner product 
(Equation (6)) of the matrix 𝑄𝑄𝑄𝑄 representing the FFT of the 
quantifier and 𝐴𝐴𝐴𝐴 representing the FFT of the image. If the 
hexagonal patterns align, this will be larger than if none of the 
patterns align. 

 
< 𝐴𝐴𝐴𝐴,𝑄𝑄𝑄𝑄 > = �𝐴𝐴𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒∗ 𝑄𝑄𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝑒𝑒𝑒𝑒,𝑒𝑒𝑒𝑒

(6) 

 
However, in order for this computation to work, the FFTs must 
be pre-processed first. Otherwise, images that are very bright 
will automatically have a very large inner product, or triangles 
that are not exactly aligned with those of the quantifier image 
may have a low inner product despite perfect alignment 
between triangles in the AFM image. The quantifier algorithm 
is as follows:  

1. Load the images and take their FFTs.  
2. Remove uniform background noise. 
3. Remove outliers above an experimentally determined 

high quantile. In the future, an LPF could be used.  
4. Normalize each FFT F by dividing by its Frobenius 

norm, √< 𝐹𝐹𝐹𝐹,𝐹𝐹𝐹𝐹 >, where the inner product is given in 
(6).   

5. Compute what we here define as the q-score, defined 
as the inner product of the processed FFTs 𝐴𝐴𝐴𝐴′,𝑄𝑄𝑄𝑄′: 
 

𝑞𝑞𝑞𝑞 = < 𝐴𝐴𝐴𝐴′,𝑄𝑄𝑄𝑄′ > (7) 
 

6. In addition, compute the error, defined below. Note 
that low q-scores are correlated with high errors.  
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There is one further challenge: rotating an image will also rotate 
the FT of that image. For instance, rotation of the quantifier 
triangle tessellation image by 10 degrees will also rotate its 
Fourier transform by 10 degrees. The proof is below:  
 
Working in polar coordinates, set 𝜕𝜕𝜕𝜕 = 𝑟𝑟𝑟𝑟 cos 𝜃𝜃𝜃𝜃, 𝑦𝑦𝑦𝑦 = 𝑟𝑟𝑟𝑟 sin𝜃𝜃𝜃𝜃,𝑢𝑢𝑢𝑢 =
𝜌𝜌𝜌𝜌 cos𝜙𝜙𝜙𝜙, 𝑣𝑣𝑣𝑣 = 𝜌𝜌𝜌𝜌 sin𝜙𝜙𝜙𝜙. Plugging this into Eq. 2, we see 𝐹𝐹𝐹𝐹(𝜌𝜌𝜌𝜌,𝜙𝜙𝜙𝜙)  

= � � 𝑓𝑓𝑓𝑓(𝑟𝑟𝑟𝑟,𝜃𝜃𝜃𝜃)𝑒𝑒𝑒𝑒−𝑒𝑒𝑒𝑒2𝜋𝜋𝜋𝜋(𝑟𝑟𝑟𝑟 cos 𝜃𝜃𝜃𝜃 𝜌𝜌𝜌𝜌 cos𝜙𝜙𝜙𝜙+𝑟𝑟𝑟𝑟 sin 𝜃𝜃𝜃𝜃 𝜌𝜌𝜌𝜌 sin𝜙𝜙𝜙𝜙)
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= � � 𝑓𝑓𝑓𝑓(𝑟𝑟𝑟𝑟, 𝜃𝜃𝜃𝜃)𝑒𝑒𝑒𝑒−𝑒𝑒𝑒𝑒2𝜋𝜋𝜋𝜋𝑟𝑟𝑟𝑟𝜌𝜌𝜌𝜌 cos(𝜃𝜃𝜃𝜃−𝜙𝜙𝜙𝜙)
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𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝜃𝜃𝜃𝜃
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By inspection, a rotation in real space results in the same 
rotation in k-space, i.e.  

𝑓𝑓𝑓𝑓(𝑟𝑟𝑟𝑟,𝜃𝜃𝜃𝜃 + 𝜃𝜃𝜃𝜃0) ↔ 𝐹𝐹𝐹𝐹(𝜌𝜌𝜌𝜌,𝜙𝜙𝜙𝜙 + 𝜃𝜃𝜃𝜃0) (9) 
 
In order to avoid accidental mismatch between potential perfect 
tessellations of the substrate and quantifier (i.e. the substrate 
hexagonal pattern could, by chance, be rotated 30 degrees away 
from the quantifier FFT hexagonal pattern), we will rotate the 
quantifier by small increments, going through the above 
algorithm and computing the q-score and error for each 
rotation. We can perform this rotation in real space and then 
take the Fourier transform, as rotating in either basis is 
equivalent by (9). Then, we select the highest q-score (i.e. the 
best match) and set that as the true q-score, along with its 
concurrent error. Note that for a 6-fold symmetric image such 
as a tessellation of triangles, we only have to rotate through a 
total of 60 degrees before the original pattern returns, 
decreasing computational time. In addition, the amount of each 
rotation can be tuned according to computational demands. 
 A quick internal calibration of the quantification algorithm is 
that it should return 1 if 𝑄𝑄𝑄𝑄 = 𝐴𝐴𝐴𝐴; this is indeed the case.  
 Next, we test this algorithm on our images, depicted in Figure 
5. The different quantifiers used are the mono-color image (Fig. 
1c), multi-color, -size image (Fig. 1g), and multicolor image 
(Fig. 1e). Recall that a high q-score is indicative of high 
matching with the ideal pattern, and subsequent high ordering.  
While the particular q-scores change depending on the choice 
of quantifier, the ordering remains the same: sapphire C is the 
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quantifying epitaxial growth. However, this tool is 
ineffective when the resulting thin film does not 
perfectly match up with the sapphire crystal lines (as 
with the holmium oxide), and when the size regime of 
interest extends beyond a couple nanometers (in our 
case, the relevant regime is hundreds of nanometers; 
see Fig. 1).  

2. Theoretical lattice mismatch [22]. Every material has 
a known crystal structure, and the difference between 
lattices (i.e. the size of a holmium hexagon vs a 
sapphire hexagon) can be computed. Lattice strain 𝑠𝑠𝑠𝑠 is 
determined by the crystal spacing of the substrate 𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑥𝑥𝑥𝑥𝑠𝑠𝑠𝑠 
and intrinsic crystal spacing of the film material 𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  
in Equation (5). Typically, a lattice strain of below 
10% (𝑠𝑠𝑠𝑠 = 0.1) suggests epitaxial thin film growth.  
 

𝑠𝑠𝑠𝑠 =
𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑥𝑥𝑥𝑥𝑠𝑠𝑠𝑠 − 𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑥𝑥𝑥𝑥𝑠𝑠𝑠𝑠
(5) 

 
However, this technique is not a true “measurement” 
of ordering, but rather a convenient percentage that 
can be reported along with qualitative images of 
clearly ordered growth (i.e. aligned nanowires). 
Lattice mismatch does not always determine epitaxial 
growth and vice versa [23]. For example, the lattice 
strain between holmium oxide and sapphire C is 𝑠𝑠𝑠𝑠 =
 0.25 > 0.1, but it is clear by inspection that choice of 
substrate influences growth (Fig. 4a,c,e).  

 As a result, development of a quantification scheme beyond 
lattice strain that can utilize easy-to-collect topographical data 
(i.e. from AFM, SEM) is paramount to understanding partial 
ordering and ordering on large scales.  
 Once again, tools from signal processing come into play. 
Rather than qualitatively comparing the FFT of an ordered 
lattice of triangles with that of AFM images, we can 
quantitatively compare the two using an inner product. 
 First, we choose a quantifier, an ideal image and 
corresponding FFT to model the epitaxy that we would like to 
measure a given thin film’s similarity to. Note that the choice 
of quantifier will define our result, so future work must be 
careful when comparing different results to make sure the same 
choice of quantifier image was used.  

To measure the similarity of a given image with the 
quantifier, we could simply take a Frobenius inner product 
(Equation (6)) of the matrix 𝑄𝑄𝑄𝑄 representing the FFT of the 
quantifier and 𝐴𝐴𝐴𝐴 representing the FFT of the image. If the 
hexagonal patterns align, this will be larger than if none of the 
patterns align. 

 
< 𝐴𝐴𝐴𝐴,𝑄𝑄𝑄𝑄 > = �𝐴𝐴𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒∗ 𝑄𝑄𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝑒𝑒𝑒𝑒,𝑒𝑒𝑒𝑒

(6) 

 
However, in order for this computation to work, the FFTs must 
be pre-processed first. Otherwise, images that are very bright 
will automatically have a very large inner product, or triangles 
that are not exactly aligned with those of the quantifier image 
may have a low inner product despite perfect alignment 
between triangles in the AFM image. The quantifier algorithm 
is as follows:  

1. Load the images and take their FFTs.  
2. Remove uniform background noise. 
3. Remove outliers above an experimentally determined 

high quantile. In the future, an LPF could be used.  
4. Normalize each FFT F by dividing by its Frobenius 

norm, √< 𝐹𝐹𝐹𝐹,𝐹𝐹𝐹𝐹 >, where the inner product is given in 
(6).   

5. Compute what we here define as the q-score, defined 
as the inner product of the processed FFTs 𝐴𝐴𝐴𝐴′,𝑄𝑄𝑄𝑄′: 
 

𝑞𝑞𝑞𝑞 = < 𝐴𝐴𝐴𝐴′,𝑄𝑄𝑄𝑄′ > (7) 
 

6. In addition, compute the error, defined below. Note 
that low q-scores are correlated with high errors.  
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There is one further challenge: rotating an image will also rotate 
the FT of that image. For instance, rotation of the quantifier 
triangle tessellation image by 10 degrees will also rotate its 
Fourier transform by 10 degrees. The proof is below:  
 
Working in polar coordinates, set 𝜕𝜕𝜕𝜕 = 𝑟𝑟𝑟𝑟 cos 𝜃𝜃𝜃𝜃, 𝑦𝑦𝑦𝑦 = 𝑟𝑟𝑟𝑟 sin𝜃𝜃𝜃𝜃,𝑢𝑢𝑢𝑢 =
𝜌𝜌𝜌𝜌 cos𝜙𝜙𝜙𝜙, 𝑣𝑣𝑣𝑣 = 𝜌𝜌𝜌𝜌 sin𝜙𝜙𝜙𝜙. Plugging this into Eq. 2, we see 𝐹𝐹𝐹𝐹(𝜌𝜌𝜌𝜌,𝜙𝜙𝜙𝜙)  
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By inspection, a rotation in real space results in the same 
rotation in k-space, i.e.  

𝑓𝑓𝑓𝑓(𝑟𝑟𝑟𝑟,𝜃𝜃𝜃𝜃 + 𝜃𝜃𝜃𝜃0) ↔ 𝐹𝐹𝐹𝐹(𝜌𝜌𝜌𝜌,𝜙𝜙𝜙𝜙 + 𝜃𝜃𝜃𝜃0) (9) 
 
In order to avoid accidental mismatch between potential perfect 
tessellations of the substrate and quantifier (i.e. the substrate 
hexagonal pattern could, by chance, be rotated 30 degrees away 
from the quantifier FFT hexagonal pattern), we will rotate the 
quantifier by small increments, going through the above 
algorithm and computing the q-score and error for each 
rotation. We can perform this rotation in real space and then 
take the Fourier transform, as rotating in either basis is 
equivalent by (9). Then, we select the highest q-score (i.e. the 
best match) and set that as the true q-score, along with its 
concurrent error. Note that for a 6-fold symmetric image such 
as a tessellation of triangles, we only have to rotate through a 
total of 60 degrees before the original pattern returns, 
decreasing computational time. In addition, the amount of each 
rotation can be tuned according to computational demands. 
 A quick internal calibration of the quantification algorithm is 
that it should return 1 if 𝑄𝑄𝑄𝑄 = 𝐴𝐴𝐴𝐴; this is indeed the case.  
 Next, we test this algorithm on our images, depicted in Figure 
5. The different quantifiers used are the mono-color image (Fig. 
1c), multi-color, -size image (Fig. 1g), and multicolor image 
(Fig. 1e). Recall that a high q-score is indicative of high 
matching with the ideal pattern, and subsequent high ordering.  
While the particular q-scores change depending on the choice 
of quantifier, the ordering remains the same: sapphire C is the 
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quantifying epitaxial growth. However, this tool is 
ineffective when the resulting thin film does not 
perfectly match up with the sapphire crystal lines (as 
with the holmium oxide), and when the size regime of 
interest extends beyond a couple nanometers (in our 
case, the relevant regime is hundreds of nanometers; 
see Fig. 1).  

2. Theoretical lattice mismatch [22]. Every material has 
a known crystal structure, and the difference between 
lattices (i.e. the size of a holmium hexagon vs a 
sapphire hexagon) can be computed. Lattice strain 𝑠𝑠𝑠𝑠 is 
determined by the crystal spacing of the substrate 𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑥𝑥𝑥𝑥𝑠𝑠𝑠𝑠 
and intrinsic crystal spacing of the film material 𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  
in Equation (5). Typically, a lattice strain of below 
10% (𝑠𝑠𝑠𝑠 = 0.1) suggests epitaxial thin film growth.  
 

𝑠𝑠𝑠𝑠 =
𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑥𝑥𝑥𝑥𝑠𝑠𝑠𝑠 − 𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑥𝑥𝑥𝑥𝑠𝑠𝑠𝑠
(5) 

 
However, this technique is not a true “measurement” 
of ordering, but rather a convenient percentage that 
can be reported along with qualitative images of 
clearly ordered growth (i.e. aligned nanowires). 
Lattice mismatch does not always determine epitaxial 
growth and vice versa [23]. For example, the lattice 
strain between holmium oxide and sapphire C is 𝑠𝑠𝑠𝑠 =
 0.25 > 0.1, but it is clear by inspection that choice of 
substrate influences growth (Fig. 4a,c,e).  

 As a result, development of a quantification scheme beyond 
lattice strain that can utilize easy-to-collect topographical data 
(i.e. from AFM, SEM) is paramount to understanding partial 
ordering and ordering on large scales.  
 Once again, tools from signal processing come into play. 
Rather than qualitatively comparing the FFT of an ordered 
lattice of triangles with that of AFM images, we can 
quantitatively compare the two using an inner product. 
 First, we choose a quantifier, an ideal image and 
corresponding FFT to model the epitaxy that we would like to 
measure a given thin film’s similarity to. Note that the choice 
of quantifier will define our result, so future work must be 
careful when comparing different results to make sure the same 
choice of quantifier image was used.  

To measure the similarity of a given image with the 
quantifier, we could simply take a Frobenius inner product 
(Equation (6)) of the matrix 𝑄𝑄𝑄𝑄 representing the FFT of the 
quantifier and 𝐴𝐴𝐴𝐴 representing the FFT of the image. If the 
hexagonal patterns align, this will be larger than if none of the 
patterns align. 

 
< 𝐴𝐴𝐴𝐴,𝑄𝑄𝑄𝑄 > = �𝐴𝐴𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒∗ 𝑄𝑄𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝑒𝑒𝑒𝑒,𝑒𝑒𝑒𝑒

(6) 

 
However, in order for this computation to work, the FFTs must 
be pre-processed first. Otherwise, images that are very bright 
will automatically have a very large inner product, or triangles 
that are not exactly aligned with those of the quantifier image 
may have a low inner product despite perfect alignment 
between triangles in the AFM image. The quantifier algorithm 
is as follows:  

1. Load the images and take their FFTs.  
2. Remove uniform background noise. 
3. Remove outliers above an experimentally determined 

high quantile. In the future, an LPF could be used.  
4. Normalize each FFT F by dividing by its Frobenius 

norm, √< 𝐹𝐹𝐹𝐹,𝐹𝐹𝐹𝐹 >, where the inner product is given in 
(6).   

5. Compute what we here define as the q-score, defined 
as the inner product of the processed FFTs 𝐴𝐴𝐴𝐴′,𝑄𝑄𝑄𝑄′: 
 

𝑞𝑞𝑞𝑞 = < 𝐴𝐴𝐴𝐴′,𝑄𝑄𝑄𝑄′ > (7) 
 

6. In addition, compute the error, defined below. Note 
that low q-scores are correlated with high errors.  
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(8) 

 
There is one further challenge: rotating an image will also rotate 
the FT of that image. For instance, rotation of the quantifier 
triangle tessellation image by 10 degrees will also rotate its 
Fourier transform by 10 degrees. The proof is below:  
 
Working in polar coordinates, set 𝜕𝜕𝜕𝜕 = 𝑟𝑟𝑟𝑟 cos 𝜃𝜃𝜃𝜃, 𝑦𝑦𝑦𝑦 = 𝑟𝑟𝑟𝑟 sin𝜃𝜃𝜃𝜃,𝑢𝑢𝑢𝑢 =
𝜌𝜌𝜌𝜌 cos𝜙𝜙𝜙𝜙, 𝑣𝑣𝑣𝑣 = 𝜌𝜌𝜌𝜌 sin𝜙𝜙𝜙𝜙. Plugging this into Eq. 2, we see 𝐹𝐹𝐹𝐹(𝜌𝜌𝜌𝜌,𝜙𝜙𝜙𝜙)  
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= � � 𝑓𝑓𝑓𝑓(𝑟𝑟𝑟𝑟, 𝜃𝜃𝜃𝜃)𝑒𝑒𝑒𝑒−𝑒𝑒𝑒𝑒2𝜋𝜋𝜋𝜋𝑟𝑟𝑟𝑟𝜌𝜌𝜌𝜌 cos(𝜃𝜃𝜃𝜃−𝜙𝜙𝜙𝜙)
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∞

0
 

By inspection, a rotation in real space results in the same 
rotation in k-space, i.e.  

𝑓𝑓𝑓𝑓(𝑟𝑟𝑟𝑟,𝜃𝜃𝜃𝜃 + 𝜃𝜃𝜃𝜃0) ↔ 𝐹𝐹𝐹𝐹(𝜌𝜌𝜌𝜌,𝜙𝜙𝜙𝜙 + 𝜃𝜃𝜃𝜃0) (9) 
 
In order to avoid accidental mismatch between potential perfect 
tessellations of the substrate and quantifier (i.e. the substrate 
hexagonal pattern could, by chance, be rotated 30 degrees away 
from the quantifier FFT hexagonal pattern), we will rotate the 
quantifier by small increments, going through the above 
algorithm and computing the q-score and error for each 
rotation. We can perform this rotation in real space and then 
take the Fourier transform, as rotating in either basis is 
equivalent by (9). Then, we select the highest q-score (i.e. the 
best match) and set that as the true q-score, along with its 
concurrent error. Note that for a 6-fold symmetric image such 
as a tessellation of triangles, we only have to rotate through a 
total of 60 degrees before the original pattern returns, 
decreasing computational time. In addition, the amount of each 
rotation can be tuned according to computational demands. 
 A quick internal calibration of the quantification algorithm is 
that it should return 1 if 𝑄𝑄𝑄𝑄 = 𝐴𝐴𝐴𝐴; this is indeed the case.  
 Next, we test this algorithm on our images, depicted in Figure 
5. The different quantifiers used are the mono-color image (Fig. 
1c), multi-color, -size image (Fig. 1g), and multicolor image 
(Fig. 1e). Recall that a high q-score is indicative of high 
matching with the ideal pattern, and subsequent high ordering.  
While the particular q-scores change depending on the choice 
of quantifier, the ordering remains the same: sapphire C is the 
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quantifying epitaxial growth. However, this tool is 
ineffective when the resulting thin film does not 
perfectly match up with the sapphire crystal lines (as 
with the holmium oxide), and when the size regime of 
interest extends beyond a couple nanometers (in our 
case, the relevant regime is hundreds of nanometers; 
see Fig. 1).  

2. Theoretical lattice mismatch [22]. Every material has 
a known crystal structure, and the difference between 
lattices (i.e. the size of a holmium hexagon vs a 
sapphire hexagon) can be computed. Lattice strain 𝑠𝑠𝑠𝑠 is 
determined by the crystal spacing of the substrate 𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑥𝑥𝑥𝑥𝑠𝑠𝑠𝑠 
and intrinsic crystal spacing of the film material 𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  
in Equation (5). Typically, a lattice strain of below 
10% (𝑠𝑠𝑠𝑠 = 0.1) suggests epitaxial thin film growth.  
 

𝑠𝑠𝑠𝑠 =
𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑥𝑥𝑥𝑥𝑠𝑠𝑠𝑠 − 𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑥𝑥𝑥𝑥𝑠𝑠𝑠𝑠
(5) 

 
However, this technique is not a true “measurement” 
of ordering, but rather a convenient percentage that 
can be reported along with qualitative images of 
clearly ordered growth (i.e. aligned nanowires). 
Lattice mismatch does not always determine epitaxial 
growth and vice versa [23]. For example, the lattice 
strain between holmium oxide and sapphire C is 𝑠𝑠𝑠𝑠 =
 0.25 > 0.1, but it is clear by inspection that choice of 
substrate influences growth (Fig. 4a,c,e).  

 As a result, development of a quantification scheme beyond 
lattice strain that can utilize easy-to-collect topographical data 
(i.e. from AFM, SEM) is paramount to understanding partial 
ordering and ordering on large scales.  
 Once again, tools from signal processing come into play. 
Rather than qualitatively comparing the FFT of an ordered 
lattice of triangles with that of AFM images, we can 
quantitatively compare the two using an inner product. 
 First, we choose a quantifier, an ideal image and 
corresponding FFT to model the epitaxy that we would like to 
measure a given thin film’s similarity to. Note that the choice 
of quantifier will define our result, so future work must be 
careful when comparing different results to make sure the same 
choice of quantifier image was used.  

To measure the similarity of a given image with the 
quantifier, we could simply take a Frobenius inner product 
(Equation (6)) of the matrix 𝑄𝑄𝑄𝑄 representing the FFT of the 
quantifier and 𝐴𝐴𝐴𝐴 representing the FFT of the image. If the 
hexagonal patterns align, this will be larger than if none of the 
patterns align. 

 
< 𝐴𝐴𝐴𝐴,𝑄𝑄𝑄𝑄 > = �𝐴𝐴𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒∗ 𝑄𝑄𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝑒𝑒𝑒𝑒,𝑒𝑒𝑒𝑒

(6) 

 
However, in order for this computation to work, the FFTs must 
be pre-processed first. Otherwise, images that are very bright 
will automatically have a very large inner product, or triangles 
that are not exactly aligned with those of the quantifier image 
may have a low inner product despite perfect alignment 
between triangles in the AFM image. The quantifier algorithm 
is as follows:  

1. Load the images and take their FFTs.  
2. Remove uniform background noise. 
3. Remove outliers above an experimentally determined 

high quantile. In the future, an LPF could be used.  
4. Normalize each FFT F by dividing by its Frobenius 

norm, √< 𝐹𝐹𝐹𝐹,𝐹𝐹𝐹𝐹 >, where the inner product is given in 
(6).   

5. Compute what we here define as the q-score, defined 
as the inner product of the processed FFTs 𝐴𝐴𝐴𝐴′,𝑄𝑄𝑄𝑄′: 
 

𝑞𝑞𝑞𝑞 = < 𝐴𝐴𝐴𝐴′,𝑄𝑄𝑄𝑄′ > (7) 
 

6. In addition, compute the error, defined below. Note 
that low q-scores are correlated with high errors.  
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There is one further challenge: rotating an image will also rotate 
the FT of that image. For instance, rotation of the quantifier 
triangle tessellation image by 10 degrees will also rotate its 
Fourier transform by 10 degrees. The proof is below:  
 
Working in polar coordinates, set 𝜕𝜕𝜕𝜕 = 𝑟𝑟𝑟𝑟 cos 𝜃𝜃𝜃𝜃, 𝑦𝑦𝑦𝑦 = 𝑟𝑟𝑟𝑟 sin𝜃𝜃𝜃𝜃,𝑢𝑢𝑢𝑢 =
𝜌𝜌𝜌𝜌 cos𝜙𝜙𝜙𝜙, 𝑣𝑣𝑣𝑣 = 𝜌𝜌𝜌𝜌 sin𝜙𝜙𝜙𝜙. Plugging this into Eq. 2, we see 𝐹𝐹𝐹𝐹(𝜌𝜌𝜌𝜌,𝜙𝜙𝜙𝜙)  
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By inspection, a rotation in real space results in the same 
rotation in k-space, i.e.  

𝑓𝑓𝑓𝑓(𝑟𝑟𝑟𝑟,𝜃𝜃𝜃𝜃 + 𝜃𝜃𝜃𝜃0) ↔ 𝐹𝐹𝐹𝐹(𝜌𝜌𝜌𝜌,𝜙𝜙𝜙𝜙 + 𝜃𝜃𝜃𝜃0) (9) 
 
In order to avoid accidental mismatch between potential perfect 
tessellations of the substrate and quantifier (i.e. the substrate 
hexagonal pattern could, by chance, be rotated 30 degrees away 
from the quantifier FFT hexagonal pattern), we will rotate the 
quantifier by small increments, going through the above 
algorithm and computing the q-score and error for each 
rotation. We can perform this rotation in real space and then 
take the Fourier transform, as rotating in either basis is 
equivalent by (9). Then, we select the highest q-score (i.e. the 
best match) and set that as the true q-score, along with its 
concurrent error. Note that for a 6-fold symmetric image such 
as a tessellation of triangles, we only have to rotate through a 
total of 60 degrees before the original pattern returns, 
decreasing computational time. In addition, the amount of each 
rotation can be tuned according to computational demands. 
 A quick internal calibration of the quantification algorithm is 
that it should return 1 if 𝑄𝑄𝑄𝑄 = 𝐴𝐴𝐴𝐴; this is indeed the case.  
 Next, we test this algorithm on our images, depicted in Figure 
5. The different quantifiers used are the mono-color image (Fig. 
1c), multi-color, -size image (Fig. 1g), and multicolor image 
(Fig. 1e). Recall that a high q-score is indicative of high 
matching with the ideal pattern, and subsequent high ordering.  
While the particular q-scores change depending on the choice 
of quantifier, the ordering remains the same: sapphire C is the 
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quantifying epitaxial growth. However, this tool is 
ineffective when the resulting thin film does not 
perfectly match up with the sapphire crystal lines (as 
with the holmium oxide), and when the size regime of 
interest extends beyond a couple nanometers (in our 
case, the relevant regime is hundreds of nanometers; 
see Fig. 1).  

2. Theoretical lattice mismatch [22]. Every material has 
a known crystal structure, and the difference between 
lattices (i.e. the size of a holmium hexagon vs a 
sapphire hexagon) can be computed. Lattice strain 𝑠𝑠𝑠𝑠 is 
determined by the crystal spacing of the substrate 𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑥𝑥𝑥𝑥𝑠𝑠𝑠𝑠 
and intrinsic crystal spacing of the film material 𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  
in Equation (5). Typically, a lattice strain of below 
10% (𝑠𝑠𝑠𝑠 = 0.1) suggests epitaxial thin film growth.  
 

𝑠𝑠𝑠𝑠 =
𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑥𝑥𝑥𝑥𝑠𝑠𝑠𝑠 − 𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑥𝑥𝑥𝑥𝑠𝑠𝑠𝑠
(5) 

 
However, this technique is not a true “measurement” 
of ordering, but rather a convenient percentage that 
can be reported along with qualitative images of 
clearly ordered growth (i.e. aligned nanowires). 
Lattice mismatch does not always determine epitaxial 
growth and vice versa [23]. For example, the lattice 
strain between holmium oxide and sapphire C is 𝑠𝑠𝑠𝑠 =
 0.25 > 0.1, but it is clear by inspection that choice of 
substrate influences growth (Fig. 4a,c,e).  

 As a result, development of a quantification scheme beyond 
lattice strain that can utilize easy-to-collect topographical data 
(i.e. from AFM, SEM) is paramount to understanding partial 
ordering and ordering on large scales.  
 Once again, tools from signal processing come into play. 
Rather than qualitatively comparing the FFT of an ordered 
lattice of triangles with that of AFM images, we can 
quantitatively compare the two using an inner product. 
 First, we choose a quantifier, an ideal image and 
corresponding FFT to model the epitaxy that we would like to 
measure a given thin film’s similarity to. Note that the choice 
of quantifier will define our result, so future work must be 
careful when comparing different results to make sure the same 
choice of quantifier image was used.  

To measure the similarity of a given image with the 
quantifier, we could simply take a Frobenius inner product 
(Equation (6)) of the matrix 𝑄𝑄𝑄𝑄 representing the FFT of the 
quantifier and 𝐴𝐴𝐴𝐴 representing the FFT of the image. If the 
hexagonal patterns align, this will be larger than if none of the 
patterns align. 

 
< 𝐴𝐴𝐴𝐴,𝑄𝑄𝑄𝑄 > = �𝐴𝐴𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒∗ 𝑄𝑄𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝑒𝑒𝑒𝑒,𝑒𝑒𝑒𝑒

(6) 

 
However, in order for this computation to work, the FFTs must 
be pre-processed first. Otherwise, images that are very bright 
will automatically have a very large inner product, or triangles 
that are not exactly aligned with those of the quantifier image 
may have a low inner product despite perfect alignment 
between triangles in the AFM image. The quantifier algorithm 
is as follows:  

1. Load the images and take their FFTs.  
2. Remove uniform background noise. 
3. Remove outliers above an experimentally determined 

high quantile. In the future, an LPF could be used.  
4. Normalize each FFT F by dividing by its Frobenius 

norm, √< 𝐹𝐹𝐹𝐹,𝐹𝐹𝐹𝐹 >, where the inner product is given in 
(6).   

5. Compute what we here define as the q-score, defined 
as the inner product of the processed FFTs 𝐴𝐴𝐴𝐴′,𝑄𝑄𝑄𝑄′: 
 

𝑞𝑞𝑞𝑞 = < 𝐴𝐴𝐴𝐴′,𝑄𝑄𝑄𝑄′ > (7) 
 

6. In addition, compute the error, defined below. Note 
that low q-scores are correlated with high errors.  

 
𝜖𝜖𝜖𝜖 =  ��𝐴𝐴𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 − 𝑄𝑄𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒�

2

𝑒𝑒𝑒𝑒,𝑒𝑒𝑒𝑒

(8) 

 
There is one further challenge: rotating an image will also rotate 
the FT of that image. For instance, rotation of the quantifier 
triangle tessellation image by 10 degrees will also rotate its 
Fourier transform by 10 degrees. The proof is below:  
 
Working in polar coordinates, set 𝜕𝜕𝜕𝜕 = 𝑟𝑟𝑟𝑟 cos 𝜃𝜃𝜃𝜃, 𝑦𝑦𝑦𝑦 = 𝑟𝑟𝑟𝑟 sin𝜃𝜃𝜃𝜃,𝑢𝑢𝑢𝑢 =
𝜌𝜌𝜌𝜌 cos𝜙𝜙𝜙𝜙, 𝑣𝑣𝑣𝑣 = 𝜌𝜌𝜌𝜌 sin𝜙𝜙𝜙𝜙. Plugging this into Eq. 2, we see 𝐹𝐹𝐹𝐹(𝜌𝜌𝜌𝜌,𝜙𝜙𝜙𝜙)  

= � � 𝑓𝑓𝑓𝑓(𝑟𝑟𝑟𝑟,𝜃𝜃𝜃𝜃)𝑒𝑒𝑒𝑒−𝑒𝑒𝑒𝑒2𝜋𝜋𝜋𝜋(𝑟𝑟𝑟𝑟 cos 𝜃𝜃𝜃𝜃 𝜌𝜌𝜌𝜌 cos𝜙𝜙𝜙𝜙+𝑟𝑟𝑟𝑟 sin 𝜃𝜃𝜃𝜃 𝜌𝜌𝜌𝜌 sin𝜙𝜙𝜙𝜙)
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By inspection, a rotation in real space results in the same 
rotation in k-space, i.e.  

𝑓𝑓𝑓𝑓(𝑟𝑟𝑟𝑟,𝜃𝜃𝜃𝜃 + 𝜃𝜃𝜃𝜃0) ↔ 𝐹𝐹𝐹𝐹(𝜌𝜌𝜌𝜌,𝜙𝜙𝜙𝜙 + 𝜃𝜃𝜃𝜃0) (9) 
 
In order to avoid accidental mismatch between potential perfect 
tessellations of the substrate and quantifier (i.e. the substrate 
hexagonal pattern could, by chance, be rotated 30 degrees away 
from the quantifier FFT hexagonal pattern), we will rotate the 
quantifier by small increments, going through the above 
algorithm and computing the q-score and error for each 
rotation. We can perform this rotation in real space and then 
take the Fourier transform, as rotating in either basis is 
equivalent by (9). Then, we select the highest q-score (i.e. the 
best match) and set that as the true q-score, along with its 
concurrent error. Note that for a 6-fold symmetric image such 
as a tessellation of triangles, we only have to rotate through a 
total of 60 degrees before the original pattern returns, 
decreasing computational time. In addition, the amount of each 
rotation can be tuned according to computational demands. 
 A quick internal calibration of the quantification algorithm is 
that it should return 1 if 𝑄𝑄𝑄𝑄 = 𝐴𝐴𝐴𝐴; this is indeed the case.  
 Next, we test this algorithm on our images, depicted in Figure 
5. The different quantifiers used are the mono-color image (Fig. 
1c), multi-color, -size image (Fig. 1g), and multicolor image 
(Fig. 1e). Recall that a high q-score is indicative of high 
matching with the ideal pattern, and subsequent high ordering.  
While the particular q-scores change depending on the choice 
of quantifier, the ordering remains the same: sapphire C is the 
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quantifying epitaxial growth. However, this tool is 
ineffective when the resulting thin film does not 
perfectly match up with the sapphire crystal lines (as 
with the holmium oxide), and when the size regime of 
interest extends beyond a couple nanometers (in our 
case, the relevant regime is hundreds of nanometers; 
see Fig. 1).  

2. Theoretical lattice mismatch [22]. Every material has 
a known crystal structure, and the difference between 
lattices (i.e. the size of a holmium hexagon vs a 
sapphire hexagon) can be computed. Lattice strain 𝑠𝑠𝑠𝑠 is 
determined by the crystal spacing of the substrate 𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑥𝑥𝑥𝑥𝑠𝑠𝑠𝑠 
and intrinsic crystal spacing of the film material 𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  
in Equation (5). Typically, a lattice strain of below 
10% (𝑠𝑠𝑠𝑠 = 0.1) suggests epitaxial thin film growth.  
 

𝑠𝑠𝑠𝑠 =
𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑥𝑥𝑥𝑥𝑠𝑠𝑠𝑠 − 𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑥𝑥𝑥𝑥𝑠𝑠𝑠𝑠
(5) 

 
However, this technique is not a true “measurement” 
of ordering, but rather a convenient percentage that 
can be reported along with qualitative images of 
clearly ordered growth (i.e. aligned nanowires). 
Lattice mismatch does not always determine epitaxial 
growth and vice versa [23]. For example, the lattice 
strain between holmium oxide and sapphire C is 𝑠𝑠𝑠𝑠 =
 0.25 > 0.1, but it is clear by inspection that choice of 
substrate influences growth (Fig. 4a,c,e).  

 As a result, development of a quantification scheme beyond 
lattice strain that can utilize easy-to-collect topographical data 
(i.e. from AFM, SEM) is paramount to understanding partial 
ordering and ordering on large scales.  
 Once again, tools from signal processing come into play. 
Rather than qualitatively comparing the FFT of an ordered 
lattice of triangles with that of AFM images, we can 
quantitatively compare the two using an inner product. 
 First, we choose a quantifier, an ideal image and 
corresponding FFT to model the epitaxy that we would like to 
measure a given thin film’s similarity to. Note that the choice 
of quantifier will define our result, so future work must be 
careful when comparing different results to make sure the same 
choice of quantifier image was used.  

To measure the similarity of a given image with the 
quantifier, we could simply take a Frobenius inner product 
(Equation (6)) of the matrix 𝑄𝑄𝑄𝑄 representing the FFT of the 
quantifier and 𝐴𝐴𝐴𝐴 representing the FFT of the image. If the 
hexagonal patterns align, this will be larger than if none of the 
patterns align. 

 
< 𝐴𝐴𝐴𝐴,𝑄𝑄𝑄𝑄 > = �𝐴𝐴𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒∗ 𝑄𝑄𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
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(6) 

 
However, in order for this computation to work, the FFTs must 
be pre-processed first. Otherwise, images that are very bright 
will automatically have a very large inner product, or triangles 
that are not exactly aligned with those of the quantifier image 
may have a low inner product despite perfect alignment 
between triangles in the AFM image. The quantifier algorithm 
is as follows:  

1. Load the images and take their FFTs.  
2. Remove uniform background noise. 
3. Remove outliers above an experimentally determined 

high quantile. In the future, an LPF could be used.  
4. Normalize each FFT F by dividing by its Frobenius 

norm, √< 𝐹𝐹𝐹𝐹,𝐹𝐹𝐹𝐹 >, where the inner product is given in 
(6).   

5. Compute what we here define as the q-score, defined 
as the inner product of the processed FFTs 𝐴𝐴𝐴𝐴′,𝑄𝑄𝑄𝑄′: 
 

𝑞𝑞𝑞𝑞 = < 𝐴𝐴𝐴𝐴′,𝑄𝑄𝑄𝑄′ > (7) 
 

6. In addition, compute the error, defined below. Note 
that low q-scores are correlated with high errors.  
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There is one further challenge: rotating an image will also rotate 
the FT of that image. For instance, rotation of the quantifier 
triangle tessellation image by 10 degrees will also rotate its 
Fourier transform by 10 degrees. The proof is below:  
 
Working in polar coordinates, set 𝜕𝜕𝜕𝜕 = 𝑟𝑟𝑟𝑟 cos 𝜃𝜃𝜃𝜃, 𝑦𝑦𝑦𝑦 = 𝑟𝑟𝑟𝑟 sin𝜃𝜃𝜃𝜃,𝑢𝑢𝑢𝑢 =
𝜌𝜌𝜌𝜌 cos𝜙𝜙𝜙𝜙, 𝑣𝑣𝑣𝑣 = 𝜌𝜌𝜌𝜌 sin𝜙𝜙𝜙𝜙. Plugging this into Eq. 2, we see 𝐹𝐹𝐹𝐹(𝜌𝜌𝜌𝜌,𝜙𝜙𝜙𝜙)  

= � � 𝑓𝑓𝑓𝑓(𝑟𝑟𝑟𝑟,𝜃𝜃𝜃𝜃)𝑒𝑒𝑒𝑒−𝑒𝑒𝑒𝑒2𝜋𝜋𝜋𝜋(𝑟𝑟𝑟𝑟 cos 𝜃𝜃𝜃𝜃 𝜌𝜌𝜌𝜌 cos𝜙𝜙𝜙𝜙+𝑟𝑟𝑟𝑟 sin 𝜃𝜃𝜃𝜃 𝜌𝜌𝜌𝜌 sin𝜙𝜙𝜙𝜙)
2𝜋𝜋𝜋𝜋

0
𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝜃𝜃𝜃𝜃 

∞

0
 

= � � 𝑓𝑓𝑓𝑓(𝑟𝑟𝑟𝑟, 𝜃𝜃𝜃𝜃)𝑒𝑒𝑒𝑒−𝑒𝑒𝑒𝑒2𝜋𝜋𝜋𝜋𝑟𝑟𝑟𝑟𝜌𝜌𝜌𝜌 cos(𝜃𝜃𝜃𝜃−𝜙𝜙𝜙𝜙)
2𝜋𝜋𝜋𝜋

0
𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝜃𝜃𝜃𝜃

∞

0
 

By inspection, a rotation in real space results in the same 
rotation in k-space, i.e.  

𝑓𝑓𝑓𝑓(𝑟𝑟𝑟𝑟,𝜃𝜃𝜃𝜃 + 𝜃𝜃𝜃𝜃0) ↔ 𝐹𝐹𝐹𝐹(𝜌𝜌𝜌𝜌,𝜙𝜙𝜙𝜙 + 𝜃𝜃𝜃𝜃0) (9) 
 
In order to avoid accidental mismatch between potential perfect 
tessellations of the substrate and quantifier (i.e. the substrate 
hexagonal pattern could, by chance, be rotated 30 degrees away 
from the quantifier FFT hexagonal pattern), we will rotate the 
quantifier by small increments, going through the above 
algorithm and computing the q-score and error for each 
rotation. We can perform this rotation in real space and then 
take the Fourier transform, as rotating in either basis is 
equivalent by (9). Then, we select the highest q-score (i.e. the 
best match) and set that as the true q-score, along with its 
concurrent error. Note that for a 6-fold symmetric image such 
as a tessellation of triangles, we only have to rotate through a 
total of 60 degrees before the original pattern returns, 
decreasing computational time. In addition, the amount of each 
rotation can be tuned according to computational demands. 
 A quick internal calibration of the quantification algorithm is 
that it should return 1 if 𝑄𝑄𝑄𝑄 = 𝐴𝐴𝐴𝐴; this is indeed the case.  
 Next, we test this algorithm on our images, depicted in Figure 
5. The different quantifiers used are the mono-color image (Fig. 
1c), multi-color, -size image (Fig. 1g), and multicolor image 
(Fig. 1e). Recall that a high q-score is indicative of high 
matching with the ideal pattern, and subsequent high ordering.  
While the particular q-scores change depending on the choice 
of quantifier, the ordering remains the same: sapphire C is the 
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other set of data we have is images from 
each substrate taken 5 mm apart from 
one another, a measure of long-range 
ordering. We can then set each image as 
Q, and define another image taken from 
the same substrate as A; in other words, we 
are taking a version of the inner product 
between images from different portions 
of a given substrate. If there is long-range 
ordering, this q-score should be large; 
otherwise, it will be small.

Fig. 6. q-scores of long-range ordering on 
different substrates. A higher q suggests C 
has more long-range ordering than A.

Using 3 images from each of sapphire 
A and sapphire C, each image taken 5 
mm from the last along the same line 
of translation, we compute the q-scores 
between each permutation of the 3 
images. Zero rotation of FFTs is used, 
as rotation occurring over the course of 
translation would indicate that the long-
range ordering is broken. The resulting 
q-score for sapphire C is much higher 
than that of sapphire A (Fig. 6). Thus, the 
film grown on sapphire C is well-aligned 
across enormous spatial jumps (5 mm 
>> 5 microns, the span of each image). 
This preservation of ordering over a long 
range is highly unlikely to occur unless the 
underlying substrate is directing growth 
at each point, making this a direct and 
quantitative measure of epitaxy. 

Fig. 7. Computed error of matching for long-
range ordering. Sapphire A has much higher 
error, suggesting less order and less epitaxy. 

The error terms, computed using Equation 
(8), are small for sapphire C, but large 
for sapphire A (Fig. 7), confirming a poor 
match in Fourier space between different 
images from sapphire A and consequent 
non-epitaxial growth.

One interesting result is that the q-score, 
when comparing shifted images, 
approaches 1 for the aligned growths on 
sapphire C (Fig. 6). This approach utilizes 
the shifted AFM images as quantifiers. 
However, the q-score is nearly 1000 
times smaller when using an abstracted 
perfect tessellation as the quantifier 
(Fig. 5). As a result, the best use of the 
quantifier algorithm is likely to compute 
self q-scores, i.e. quantify the difference 
in Fourier transforms between different 
regions of a single thin film to detect 
long-range ordering. This use alleviates 
one of the biggest problems with the 
quantifier algorithm: the choice of the 
ideal quantifier or FFT to compare our 
signal to. From Figure 5, it is apparent that 
altering quantifiers can change q-scores 
by nearly 50%, and that differentiability is 
sometimes a challenge (i.e. the q-scores 
of sapphire A and sapphire C are very 
close for all but the multicolor, multi-size 
quantifier). Comparing images to their 
downstream counterparts adds an internal 
control, which is desirable as the exact 
pattern of epitaxial growth is unknown due 
to uncertainties at nanoscale. 

One interesting result is that the q-score, 
when comparing shifted images, 

approaches 1 for the aligned growths on 
sapphire C (Fig. 6). This approach utilizes 
the shifted AFM images as quantifiers. 
However, the q-score is nearly 1000 
times smaller when using an abstracted 
perfect tessellation as the quantifier 
(Fig. 5). As a result, the best use of the 
quantifier algorithm is likely to compute 
self q-scores, i.e. quantify the difference 
in Fourier transforms between different 
regions of a single thin film to detect 
long-range ordering. This use alleviates 
one of the biggest problems with the 
quantifier algorithm: the choice of the 
ideal quantifier or FFT to compare our 
signal to. From Figure 5, it is apparent that 
altering quantifiers can change q-scores 
by nearly 50%, and that differentiability is 
sometimes a challenge (i.e. the q-scores 
of sapphire A and sapphire C are very 
close for all but the multicolor, multi-size 
quantifier). Comparing images to their 
downstream counterparts adds an internal 
control, which is desirable as the exact 
pattern of epitaxial growth is unknown due 
to uncertainties at nanoscale. 

THE DISCRETE COSINE TRANSFORM: 
ANOTHER WEAPON IN THE ARSENAL?

The success of using the q-score to 
quantify long-range ordering relies on the 
transformation of real space to a form of 
frequency space. Although the Fourier 
transform was used in the quantifier 
algorithm, alternative transforms could 
potentially be used.  For example, the 
discrete cosine transform (DCT) is often 

Fig. 8. Applying DCT to epitaxial characterization. (b) depicts the DCT of (a), while (d) 
depicts the DCT of (c). The ideal ordered triangles have much more “striped” DCT than 
the randomly oriented triangles. However, this qualitative distinction disappears when 
comparing thin films grown on sapphire A (e,f) and sapphire C (g,h). (i) depicts the q-scores 
for the DQA on all substrates; they are virtually identical. 
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 used for lossy image compression, 
relying on an orthogonal basis of cosine 
functions (rather than complex exponential 
functions, as with the FT) [24]. The DCT 
is defined below, omitting normalizing 
factors: 

We define our DCT quantifier algorithm 
(DQA) as identical to the previous 
algorithm, except taking a 2D DCT in all 
places where a 2D FFT was previously 
performed.  Applying the DQA to a few test 
cases shows that it is potentially useful, but 
quantitatively challenging to optimize.
  
Fig. 8. Applying DCT to epitaxial 
characterization. (b) depicts the DCT of 
(a), while (d) depicts the DCT of (c). The 
ideal ordered triangles have much more 
“striped” DCT than the randomly oriented 
triangles. However, this qualitative 
distinction disappears when comparing 
thin films grown on sapphire A (e,f) and 
sapphire C (g,h). (i) depicts the q-scores for 
the DQA on all substrates; they are virtually 
identical. 

When looking at the discrete cosine 
transforms of ideal ordered vs unordered 
triangles (Fig. 8a-d), differences are 
immediately apparent. The DCT of the 
unordered triangles in (8a) appears 
random (8b), while that of the triangular 
tessellation in (8c) appears to contain more 
slowly varying outputs and longer regions 
with the same coefficients, resulting in a 
striped pattern (8d). 
 
This theoretical qualitatively useful 
difference disappears when looking at 
real samples. The transform of the totally 
random sample on quartz (8e) looks like 
a pattern of distorted static (8f) not so 
different than the transform of ordered 
holmium thin film on sapphire c (8h). 
Differences invisible to the eye often 
show up when computing computational 
similarities when using an inner product; 
unfortunately, applying the DQA to the 
three substrates results in virtually identical 
q-scores (8i), suggesting little quantitative 
difference when using cosines as the 
orthogonal basis set for transforming. 
 
Implementation of the discrete wavelet 
transform (DWT, reviewed in [25]) produces 
similar results. There are differences 
between the ideal ordered and random 
cases, but little immediate quantitative 
difference with the real films.  
One final future strategy beyond the scope 

of this work is development of a neural 
network for image recognition of FFTs 
that can distinguish between epitaxial, 
partially epitaxial, and non-epitaxial 
growth [26], which would improve upon 
the q-score as a metric. Although work has 
been done to optimize such a network in 
the case of particular individual thin film 
materials’ growth conditions [27], a larger 
project could utilize the FFTs of a wide 
array of datasets known by TEM or other 
techniques to demonstrate epitaxy, partial 
epitaxy, or random growth to train the 
algorithm. This approach would also allow 
quantification of epitaxy from relatively 
low-resolution topographical images 
alone. 

CONCLUSION
Because of the broad applications 
of epitaxially-grown thin films, 
mechanistically understanding their 
growth is critical to developing and 
characterizing new materials. In particular, 
a set of holmium oxide thin films grown 
on three different substrates under 
otherwise identical conditions were found 
to be exceptionally paramagnetic, but 
the degree of epitaxy was not measurable 
via traditional diffraction techniques, 
inhibiting mechanistic understanding of 
their growth. However, it was possible to 
collect extensive topographic data via AFM, 
and it was obvious that the holmium oxide 
crystallites appear to exhibit symmetry akin 
to that of a triangular tessellation. 
 
Here, we developed a qualitative 
theoretical framework for transformations 
of ordered vs unordered triangles into 
k-space, demonstrating 6-fold symmetry 
for the ordered case and symmetric 
spreading for unordered triangles. We 
compared the FFTs of holmium oxide 
crystallites grown on various substrates to 
the transforms of these ideal cases, which 
suggested that growths on sapphire C are 
epitaxially aligned. 
 
Next, we developed and tested an 
algorithm for calculating a “q-score”, a 
modified inner product between FFTs that 
quantifies the amount of similarity (and 
thus epitaxial ordering), confirming that 
sapphire C was indeed more ordered than 
sapphire A. Since this q-score relies on 
comparing two images, two approaches 
can be used: comparing a theoretically 
ideal transform to any image or comparing 
different images from the same substrate. 
The former allows comparison and 
potential identification of triangular vs 
other types of symmetry, while the latter 
allows direct quantification of long-range 

epitaxy with a robust internal control. This 
algorithm was modified to operate using 
DCTs and DWTs, with some results but little 
practical quantification success. 
 
Ultimately, the C-sapphire substrate is 
most effective at epitaxially directing 
holmium oxide thin film growth, making it 
a candidate for future experiments. More 
broadly, utilizing Fourier space enables 
quantification of epitaxial growth in the 
absence of crystal data. The q-score as 
a tool measures and quantifies epitaxial 
growth, allowing mechanistically guided 
development of new materials.
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V. THE DISCRETE COSINE TRANSFORM: ANOTHER WEAPON 
IN THE ARSENAL? 

The success of using the q-score to quantify long-range 
ordering relies on the transformation of real space to a form of 
frequency space. Although the Fourier transform was used in 
the quantifier algorithm, alternative transforms could 
potentially be used.  For example, the discrete cosine transform 
(DCT) is often used for lossy image compression, relying on an 
orthogonal basis of cosine functions (rather than complex 
exponential functions, as with the FT) [24]. The DCT is defined 
below, omitting normalizing factors:  
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(9) 

  
 We define our DCT quantifier algorithm (DQA) as 

identical to the previous algorithm, except taking a 2D DCT in 
all places where a 2D FFT was previously performed.  Applying 
the DQA to a few test cases shows that it is potentially useful, 
but quantitatively challenging to optimize. 

 

 
Fig. 8. Applying DCT to epitaxial characterization. (b) depicts 
the DCT of (a), while (d) depicts the DCT of (c). The ideal 
ordered triangles have much more “striped” DCT than the 
randomly oriented triangles. However, this qualitative 
distinction disappears when comparing thin films grown on 
sapphire A (e,f) and sapphire C (g,h). (i) depicts the q-scores 
for the DQA on all substrates; they are virtually identical.  
 
 When looking at the discrete cosine transforms of ideal 
ordered vs unordered triangles (Fig. 8a-d), differences are 
immediately apparent. The DCT of the unordered triangles in 
(8a) appears random (8b), while that of the triangular 
tessellation in (8c) appears to contain more slowly varying 
outputs and longer regions with the same coefficients, resulting 
in a striped pattern (8d).  
 This theoretical qualitatively useful difference disappears 
when looking at real samples. The transform of the totally 
random sample on quartz (8e) looks like a pattern of distorted 
static (8f) not so different than the transform of ordered 
holmium thin film on sapphire c (8h). Differences invisible to 
the eye often show up when computing computational 
similarities when using an inner product; unfortunately, 
applying the DQA to the three substrates results in virtually 

identical q-scores (8i), suggesting little quantitative difference 
when using cosines as the orthogonal basis set for transforming.  
 Implementation of the discrete wavelet transform (DWT, 
reviewed in [25]) produces similar results. There are differences 
between the ideal ordered and random cases, but little 
immediate quantitative difference with the real films.   

One final future strategy beyond the scope of this work is 
development of a neural network for image recognition of FFTs 
that can distinguish between epitaxial, partially epitaxial, and 
non-epitaxial growth [26], which would improve upon the q-
score as a metric. Although work has been done to optimize 
such a network in the case of particular individual thin film 
materials’ growth conditions [27], a larger project could utilize 
the FFTs of a wide array of datasets known by TEM or other 
techniques to demonstrate epitaxy, partial epitaxy, or random 
growth to train the algorithm. This approach would also allow 
quantification of epitaxy from relatively low-resolution 
topographical images alone.  

VI. CONCLUSION 
Because of the broad applications of epitaxially-grown thin 
films, mechanistically understanding their growth is critical to 
developing and characterizing new materials. In particular, a set 
of holmium oxide thin films grown on three different substrates 
under otherwise identical conditions were found to be 
exceptionally paramagnetic, but the degree of epitaxy was not 
measurable via traditional diffraction techniques, inhibiting 
mechanistic understanding of their growth. However, it was 
possible to collect extensive topographic data via AFM, and it 
was obvious that the holmium oxide crystallites appear to 
exhibit symmetry akin to that of a triangular tessellation.  
 Here, we developed a qualitative theoretical framework for 
transformations of ordered vs unordered triangles into k-space, 
demonstrating 6-fold symmetry for the ordered case and 
symmetric spreading for unordered triangles. We compared the 
FFTs of holmium oxide crystallites grown on various substrates 
to the transforms of these ideal cases, which suggested that 
growths on sapphire C are epitaxially aligned.  
 Next, we developed and tested an algorithm for calculating a 
“q-score”, a modified inner product between FFTs that 
quantifies the amount of similarity (and thus epitaxial ordering), 
confirming that sapphire C was indeed more ordered than 
sapphire A. Since this q-score relies on comparing two images, 
two approaches can be used: comparing a theoretically ideal 
transform to any image or comparing different images from the 
same substrate. The former allows comparison and potential 
identification of triangular vs other types of symmetry, while 
the latter allows direct quantification of long-range epitaxy with 
a robust internal control. This algorithm was modified to 
operate using DCTs and DWTs, with some results but little 
practical quantification success.  
 Ultimately, the C-sapphire substrate is most effective at 
epitaxially directing holmium oxide thin film growth, making it 
a candidate for future experiments. More broadly, utilizing 
Fourier space enables quantification of epitaxial growth in the 
absence of crystal data. The q-score as a tool measures and 
quantifies epitaxial growth, allowing mechanistically guided 
development of new materials. 
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APPLICATION
NOTE

A COMPARATIVE STUDY OF ATOMIC 
FORCE MICROSCOPY BETWEEN
AM-KPFM AND SIDEBAND KPFM, 
PRINCIPLES AND APPLICATIONS

Introduction
Since the development of Atomic 
Force Microscopy (AFM) [1], several 
measurement modes have been 
developed that characterize electrical, 
mechanical, magnetic, and thermal 
properties. Among those, Kelvin Probe 
Force Microscopy (KPFM) [2] is a well-
known mode that enables the monitoring 
of both surface morphology and surface 
potential distribution properties on a 
nanometer scale. KPFM has been utilized 
extensively to investigate the localized 
charge distributions on a surface layer 
[3], local surface potential distributions 
[4] variations of surface work functions 
[5] and ferroelectric domains [6], in a 
variety of research fields. KPFM can 
simultaneously deliver both surface 
topographical information and surface 
potential/work functions of the sample 
by applying AC and DC voltage. Using 
the same configuration as electrostatic 
force microscopy (EFM), KPFM monitors 
the surface potential and work function 
of samples by applying a DC bias (VDC) 
to nullify tip-sample potential difference. 
The VDC to the cantilever is equal to 
the surface potential (VS). The feedback 
signal, VDC, then generates the surface 
potential map. In the conventional 
method, amplitude modulation (AM)-
KPFM, the measurement signal directly 
relates to the electrostatic force between 
the sample surface and tip via the 
amplitude of the AC frequency signal 
(Figure 1a). This implies that AM-KPFM 
is mainly affected throughout the AFM 
cantilever, which has low resolution due 
to an averaging effect [7] [8].

However, Sideband KPFM has an 
advantage in terms of the spatial 
resolution of the surface potential 
measurement relative to AM-KPFM [9]. 
When the AC voltage (VAC) is applied 
between the AFM tip and the sample, an 
oscillating electrostatic force is generated 
between the tip and sample. The 
resonance frequency of the cantilever 
(f0) is modulated by the electrostatic 
force. In the frequency spectrum of the 

cantilever deflection signal, sidebands 
appear at f0 + fAC and f0 – fAC (Figure 
1b). Application of a DC voltage, which 
matches the Fermi level between the 
AFM tip and the sample, compensates for 
the electrostatic force, and the sideband 
disappears. In measuring the DC 
voltage required to compensate for the 
electrostatic force, the work function of 
the sample can be estimated.  Unlike AM-
KPFM, Sideband KPFM is mainly affected 
by the AFM tip apex. It detects the 
electrostatic force gradient by frequency 
changes and results in better resolution.

In this study, we present results obtained 
with AM-KPFM and Sideband KPFM on 
well-defined samples with extended 
areas of different surface potentials. 
From these results, we directly compare 
the spatial resolution of AM-KPFM 
and Sideband KPFM under identical 

conditions.
Materials and Methods
Sideband KPFM
Sideband KPFM is an optional AFM mode 
used to measure electrical properties 
of a sample surface. Figure 2 shows the 
connection diagram of Sideband KPFM 
which uses two lock-in amplifiers to 
measure the amplitude and phase of 
each sideband. On lock-in amplifiers 2 
and 3, a signal with a frequency of f0 ± 
fac is used as the reference signal (lock-in 
amplifiers 2) to decouple the sideband 
signals with a frequency of f0 ± fac in the 
deflection signal (lock-in amplifiers 2 
and 3). The decoupled signals from the 
two lock-in amplifiers are averaged and 
used for feedback into DC voltage. The 
AFM controller applies a corresponding 
VDC so the averaged sideband peak size 
becomes zero (As tip bias servo in Park 
SmartScanTM). 

Research Application Technology Center, Park Systems Corporation

Figure 2. Connection diagram of Sideband KPFM.

Figure 1. Frequency monitoring on AM-KPFM and Sideband KPFM.
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Test samples and AFM cantilever
ZYH grade highly-ordered pyrolytic 
graphite (HOPG, SPI Supplies) was utilized 
for showing layer by layer surface potential 
differences. A silicone substrate with low 
conductivity polymer dots was used to 
display the surface potential contrast of 
two different materials. An IFX dopant 
calibration sample (NP20, Infineon) was 
chosen to monitor the stepwise electrical 
signal. This sample consisted of 5 different 
n-type implant areas in order to compare 
the electrical signals. All imaging was 
performed using an Au coated NSC36-C 
(resonance frequency, 65 kHz; spring 
constant, 0.6 N/m; length, 130 µm) with the 
same AFM parameters.

Results and discussion
This study analyzes three different samples 
to compare the electrical resolution 
performances of AM-KPFM and Sideband 
KPFM. Figure 3 shows surface potential 
images of HOPG by AM-KPFM and 
Sideband KPFM. Sideband KPFM confirms 
the sharp contrast due to the HOPG layer, 
whereas AM-KPFM shows blurry edges. As 
shown in the line profile analysis, Sideband 
KPFM has an approximately two-fold 
higher surface potential difference on 
layers (~70 mV) than AM-KPFM (~35 mV, 
red arrow). Also, Sideband KPFM displays 
small HOPG fragments very clearly, while 
AM-KPFM shows a blurry image.

Next, the analysis of polymer dots on a 
silicone substrate was performed by AM-
KPFM and Sideband KPFM. Additionally, 
Sideband KPFM both in and out of lift 
mode were compared to investigate the 
non-contact feedback performance for 
Sideband KPFM. In Figure 4, all images 
show contrasts between the polymer dots 
and the silicone substrate. However, AM-
KPFM indicates a lower surface potential 
contrast than Sideband KPFM including 
lift mode. For Sideband KPFM, there is no 
significant difference between the no-lift 
mode and a 5 nm lift mode, which the line 
profile analysis confirms. Surface potential 
differences between the polymer dots and 
the silicone substrate are approximately 
180 mV in AM-KPFM, ~300 mV for the no-lift 
Sideband KPFM, and ~330 mV for the 5 nm 
lift Sideband KPFM.

Lastly, AM-KPFM and Sideband KPFM 
were used on a IFX dopant calibration 
sample to compare stepwise electrical 
resolution. In AM-KPFM, different doping 
level of n-type implant are recognized; 
however, checking the electrical signal 
step was difficult. In contrast, the stepwise 
electrical signal is displayed in both no-lift 

Figure 3. The comparison of surface potential between AM-KPFM (a) and Sideband KPFM (b) on a 
HOPG sample with a line profile analysis (c).

Figure 4. Comparison of surface potential between AM-KPFM (a), Sideband KPFM with no lift (b) and 
Sideband KPFM with 5 nm lift (c) on polymer dots sample with line profile analysis (d).
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and 5 nm lift Sideband KPFM. Based on 
several repetitive tests, all Sideband KPFM 
analyses show better resolution than those 
of AM-KPFM. As the line profile suggests, 
Sideband KPFM can monitor step-by-step 
surface potential differences, though AM-
KPFM can detect a gradual signal decrease.

Conclusions
In this study, we compare AM-KPFM and 
Sideband KPFM using a variety of samples. 
Those results indicate that Sideband 
KPFM has superior resolution relative to 
AM-KPFM. In surface potential images, 
Sideband KPFM shows a clear electrical 
contrast and detects relatively small 
changes. From a line profile analysis, the 
surface potential differences in Sideband 
KPFM are higher than that of AM-KPFM, 
which qualifies the superior performance 
of Sideband KPFM. However, the 
comparison between no lift and 5 nm lift in 
Sideband KPFM shows no difference for all 
tested samples. Due to the accuracy of Park 
Systems’s AFM feedback system, there is no 
tapping between the AFM tip and sample 
surface. Thus, it is possible to obtain the 

true surface morphology and a clear KPFM 
signal as well.
Since the development of KPFM, it has 
become one of the more useful AFM 
options utilized by surface material science 
and in semiconductor engineering. It is 
a unique technique for surface potential 
or work function mapping on the 
nanoscale, and the Sideband KPFM option 
offers superior spatial resolution and 
improved electrical sensitivity for material 
characterizations.
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improving our world. Being on the cutting-edge of the nanoscale 
revolution, together we can reach for new scientific horizons.  

In every field - materials science, electronics, life science, 
nanotechnology, we keep up with the exhilarating pace of 
innovation so scientists can focus on getting results. Our steadfast 
commitment is to deliver ultra-high resolution with extremely 
precise measurements quickly and easily.

Go to www.parksystems.com/grant to apply 
for the Park Nano Grant and let us help you 
achieve the results you need.

Park Announces Nano Research Grant
$1 Million Dollar

Grant Fund Established for NanoScience Research



Bringing the power and versatility 
of AFM technology to everyone

Park SmartScan™ is the revolutionary operation software for Park atomic force 
microscopes (AFM) that lets inexperienced users scan in Auto Mode with 
single-click imaging to acquire high quality nanoscale data that rival those 
obtained manually by experts. Once the user is prepared to image, the user points 
out a region of interest and a simple click begins the scan. Park SmartScan™ also 
includes a Manual Mode that provides all the functions, tools, and fine controls 
seasoned users expect and a Batch Mode for high productivity operation. This 
combination of extreme versatility, ease-of-use, and quality makes Park AFMs the 
most powerful atomic force microscopes available.

To learn more about Park SmartScan
Please visit parksystems.com/smartscan or email: inquiry@parksystems.com parksystems.com

Single-Click Imaging 
with SmartScan Auto Mode
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